
Analysis edgeR diff exp
{

import table GSE59364_DC_all.csv

subset rows GSE59364_DC_all.csv when true: $(gene) != "Total" -> filtered

edgeR counts= filtered model: ~ 0 + LPS
comparing LPS=NO - LPS=YES -> Results (normalize with tagwise dispersion)

join (filtered, Results) by group ID -> MergedResults
subset rows MergedResults when true: ($(FDR) < 0.0001) & ($(logFC) > 2 | $(logFC) < -2) -> 1% FDR

heatmap with 1% FDR select data by one or more group LPS=YES, group LPS=NO -> plot HeatmapStyle [
annotate with these groups: LPS
scale values: scale by row
cluster columns: false cluster rows: true

]

multiplot -> PreviewHeatmap [1 cols x 1 rows] Hide preview

[plot]

render plot as PDF named "heatmap.pdf" ... 72dpi

write Results to "results.tsv" ...
}

MetaR blends
User Interfaces
and Scripting

Provide Simple Abstractions
that non-programmers can
use for Data Analysis

Documentation
Booklet

http://metaR.campagnelab.org

Meta

Copyright c© 2015-2018 Fabien Campagne.

PUBLISHED BY CLINICAL AND TRANSLATIONAL SCIENCE CENTER

WEILL CORNELL MEDICINE, NEW YORK, NY

All Rights Reserved. This booklet is licensed under the terms of the Creative Commons 4.0
license (CC BY 4.0, see http://creativecommons.org/licenses/by/4.0).
Unless required by applicable law or agreed to in writing, software listings provided in
this booklet are distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
Reproductions of program fragments from the JetBrains MPS platform are provided in
accordance with terms of the Apache 2.0 license.
See http://www.jetbrains.com/mps/download/license.html and
http://www.apache.org/licenses/LICENSE-2.0.html.

Version 2.4.6 Feb 2019

http://creativecommons.org/licenses/by/4.0
http://www.jetbrains.com/mps/download/license.html
http://www.apache.org/licenses/LICENSE-2.0.html

Credits

The following authors have contributed to this booklet: Ana-Maria Sutii, Alexander
Pann, William ER Digan, Manuele Simi and Fabien Campagne.

The authors thank the developers of the Meta Programming System, who have developed
MPS since the early 2000. MetaR would not have been possible without them.
MPS Project leaders, in chronological order: Sergey Dmitriev, Igor Alshannikov, Kon-
stantin Solomatov and Alexander Shatalin. Current team members: Alexander Shatalin,
Fedor Isakov, Mihail Muhin, Michael Vlassiev, Václav Pech, Simon Alperovich, Daniil
Elovkov, Victor Matchenko, Artem Tikhomirov, Mihail Buryakov and Alexey Pyshkin.
Earlier members of the MPS team: Evgeny Gryaznov, Timur Abishev, Julia Beliaeva,
Cyril Konopko, Ilya Lintsbah, Gleb Leonov, Evgeny Kurbatsky, Sergey Sinchuk, Timur
Zambalayev, Maxim Mazin, Vadim Gurov, Evgeny Geraschenko, Darja Chembrovskaya,
Vyacheslav Lukianov and Alexander Anisimov. And these external contributors: Sascha
Lisson, Thiago Tonelli Bartolomei and Alexander Eliseyev.

We also thank the many people who have taken the MetaR training sessions at the Clini-
cal Translational Science Center (Weill Cornell Medical College, Memorial Sloan Kettering,
and Hospital for Special Surgery and Hunter College). Their feedback we received during
these sessions have been instrumental in rapidly making MetaR user-friendly.

Contents

1 Introduction . 13

1.1 Background 13

1.2 Intended audience 13

1.3 Key Concepts 13

1.4 Solutions and Models 15

2 Tables . 17

2.1 Overview 17

2.2 Create a Table 17

2.3 Column Groups Container 18

2.4 Column Groups 18

2.5 Column Group Usage 20

2.6 Example Column Group Container 21

2.7 Column Groups from a Table 21

2.8 Column Group Annotations 23

2.9 Table Viewer Tool 23

3 Analyses . 29

3.1 The MetaR Analysis Root Node 29

3.2 Styles 30
3.2.1 Binding Styles to Statements . 31

3.3 Working with Tables 33
3.3.1 Import Table . 33
3.3.2 Write Table . 33
3.3.3 Identify a Set of Columns . 33

3.4 Define Sets of Ids 34

3.5 Subset Rows 34
3.5.1 Example . 35
3.5.2 Boolean Expressions . 35

3.6 Join Tables 36
3.6.1 How Join works . 37
3.6.2 Example Join . 38

3.7 Transform Table 39

3.8 Block with Selected Tables 40

3.9 Plotting Data 41
3.9.1 boxplot . 42
3.9.2 histogram . 43
3.9.3 scatterplot . 44
3.9.4 fit x by y . 44
3.9.5 heatmap . 45
3.9.6 Venn diagram . 47
3.9.7 multiplot . 48
3.9.8 render . 50
3.9.9 UpSet plot . 50
3.9.10 MA Plot . 50
3.9.11 t-SNE . 54

4 Docker Integration . 57

4.1 Pre-requisites 57
4.1.1 Mac OS . 57
4.1.2 Other Platforms . 57

4.2 Configuring Docker 57

4.3 Running with Docker 59

5 SCnorm . 61

5.1 Single Cell Normalization 61
5.1.1 check count depth . 61
5.1.2 SCnorm . 62

6 Instant refresh . 63

6.1 Usage 63
6.1.1 Instant refresh node . 64

6.2 IR Preferences 64

6.3 Tool 65

6.4 pause instant refresh 65

6.5 Sessions 66

7 EdgeR . 67

7.1 Understanding Language Composition 67

7.2 The edgeR Statement 68

7.3 Example 68

8 Limma Voom . 71

8.1 Overview 71

8.2 The Limma Voom Statement 71

8.3 Example 72

9 Sleuth . 73

9.1 Overview 73

9.2 Sleuth statement 73

9.3 Statistical Test 74

10 Biomart . 77

10.1 Overview 77

10.2 The Biomart Statement 77

10.3 Examples 79
10.3.1 Example 1 . 79
10.3.2 Example 2 . 79

11 R Functions . 81

11.1 Overview 81
11.1.1 Function w . 81

11.2 Import Stubs Statement 82

11.3 Import Package Statement 82

11.4 Import Bioconductor Package Statement 82

11.5 Stubs 83

11.6 Eval Statement 83

11.7 Eval Expression 83

11.8 Accessing MetaR Columns within R Expressions 84

11.9 Example 84

12 Seurat . 85

12.1 The Seurat language 85

12.2 The Seurat object 86

12.3 Loading Seurat objects 86
12.3.1 Load 10X dataset . 86
12.3.2 Load dataset from table . 88

12.4 QC and Clean Up 88
12.4.1 Reject gene strategy . 89
12.4.2 Reject cell strategy . 90
12.4.3 Regress out strategy . 90
12.4.4 Accept highly variable genes strategy . 90
12.4.5 Normalization strategy . 90

12.5 Adjusting Seurat objects 91
12.5.1 Normalize Seurat object . 91
12.5.2 Scale Seurat object . 91

12.6 Plotting Seurat objects 92
12.6.1 Diagnostic plots . 92
12.6.2 Features plot . 93
12.6.3 Features and total plot . 93

12.7 Adding information to Seurat objects 95
12.7.1 Add principal component information . 95
12.7.2 Add clusters information . 95
12.7.3 Add markers information . 96

12.8 Aligning Seurat objects 97
12.8.1 Prealign Seurat objects . 97
12.8.2 Align Seurat object . 99

12.9 Limma for Seurat objects 99
12.9.1 Pre-limma Seurat object . 99
12.9.2 Limma voom . 100

12.10 Other Seurat statements 101
12.10.1 Merge Seurat objects . 101
12.10.2 Delete Seurat object . 101

13 Simulating Datasets . 103

13.1 Why simulating datasets 103

13.2 The Simulate Dataset Statement 103

13.3 Example 104

14 Extending MetaR . 107

14.1 Overview 107

14.2 Create a new Language 107

14.3 Create a new Language Concept 107

14.4 Define the Editor 108

14.5 Generate R Code 108
14.5.1 Adding package and library support . 110
14.5.2 Adjust Generator Priorities . 112
14.5.3 Redirecting the plot output . 112
14.5.4 Handling errors . 113

14.6 Using the New Language 115

14.7 Git Repository 115

15 Composable R . 117

15.1 Overview 117
15.1.1 Advantages . 117
15.1.2 Limitations . 119

15.2 RScript Root Node 119
15.2.1 Example . 120
15.2.2 Execution . 121

15.3 installOrLoad statement 121

15.4 Package Stubs 121

16 MPS Key Map . 123

List of Figures . 131

Bibliography . 137

Index . 137

Background
Intended audience
Key Concepts
Solutions and Models

1 — Introduction

1.1 Background

The MetaR software http://MetaR.campagnelab.org is an example of a new kind of in-
teractive tool for data analysis. It was developed by the Campagne laboratory using the Meta
Programming System (MPS) (see http://www.jetbrains.com/mps [Dmitriev:2004].
MPS is a mature Language Workbench that makes it relatively easy to create new languages
and tools to help users of these languages [campagne2014mps].

1.2 Intended audience

This booklet is designed to teach how to use MetaR for data analysis. In the first chapters,
we will assume that you have no prior scripting or programming experience, but will expect
you to know how to use a computer.

Chapters 14 will be useful for users who have prior programming experience. This
chapter explains how to extend MetaR with new language constructs.

1.3 Key Concepts
High-level data abstractions
MetaR is designed to make it easier to conduct data analysis. To achieve this goal, and in
contrast to programming languages such as the R language, Julia or Python, that are often
low-level and require good programming skills, MetaR offers high-level data abstractions
and provides assistance in manipulating data. High-level abstractions used in MetaR analyses
include the following concepts:

1. Tables, Columns, Column Groups and Group usages,
2. Analyses
3. Plots
4. Models

These high-level abstractions will be explained in the following chapters.

http://MetaR.campagnelab.org
http://www.jetbrains.com/mps

14 Introduction

R program generation
Analyses developed with MetaR are transformed into R programs when the user needs to
execute them. MetaR is tightly integrated with MPS to make it seamless to run analyses
without prior knowledge of the R language.

R Note that while most users can use MetaR without knowledge of the R language, all
users will need to install the R language in order to execute MetaR analyses.

Docker integration
Starting with version 1.3.1, MetaR can run the R scripts that it generates into Docker con-
tainers. Docker is a technology that makes it easier to obtain reproducible script executions.
When MetaR does not use Docker, it is possible for the R runtime to try to install a package
the first time you run an analysis with a statement that requires the package. While this
should not be a problem, we found that R package installation is brittle and can sometimes
fail at various time points, for a variety of reasons1. To avoid such problems, which tend
to occur when we give a training sessions, we now support running Analyses with Docker.
Chapter 4 explains how to configure MetaR to use Docker for reproducible analyses.

Composable language
MetaR is built as an MPS language. In contrast to languages built with compiler technology,
MPS languages are composable. Briefly, language composition is the ability to compose,
or combine, two or more languages. This ability is particularly useful to extend MetaR. It
is possible to define micro-languages, made of one or two statement types. When micro-
languages are composed with MetaR, they can support specific application domains. The
EdgeR and Limma languages provide examples of composition, where an R/Bioconductor
package called EdgeR (or Limma) has been integrated with MetaR and exposes a new kind
of statement to perform calls of differential expression. See Chapters 7 and 14 to learn more
about language composition in MetaR.

Composable R Language
Since version 1.5, MetaR is distributed with a composable R language. This language is a
full implementation of the R language in MPS. In contrast to the R language expressed as
text program, you can use composition to introduce new features in this R language. For
instance, you can design micro-languages for R, in a similar manner to that demonstrated
for MetaR (see Chapter 14). See Chapter 15 for details about composableR and an example
illustrating how you can embed an interactive user interface into R programs developed with
this language.

1For instance, because a new version of a package has become available which breaks compilation of the
package on your machine.

1.4 Solutions and Models 15

Figure 1.1: The Quick Start
menu. This menu is dis-
played when you first open
MPS, or when you have
no project currently open in
MPS. The first item in the
menu is used to create a new
project.

R The Composable R Language in MetaR 1.5 should be considered experimental. While
we believe the language supports the equivalent of the full R grammar, the implemen-
tation and interactive language editing may not be as smooth as some of the languages
that ship with MetaR. Please report any interactive editing problem you might en-
counter as a GitHub issue (see https://github.com/CampagneLaboratory/
MetaR/issues).

1.4 Solutions and Models
Developing an analysis with MetaR is done by creating nodes of the MetaR concepts in
MPS models. Models exist in MPS solutions. To learn how to create an MPS solution, read
the preview of the MPS language workbench available at http://campagnelab.org/
publications/our-books/[campagne2014mps], or watch the beginning of the MetaR
training video at http://campagnelab.org/software/metar/video-tutorials/.
Figures 1.1-1.2 provide a brief walk-through of the steps you should follow to create a
project and solution. After the project open, open the project tab(see [campagne2014mps
]) and right-click on the solution name. Import the metaR devkit and create a model.

You can create as many models as you need to store your analyses. In the following
chapter, we assume that you have created a solution and at least one model in this solution.

https://github.com/CampagneLaboratory/MetaR/issues
https://github.com/CampagneLaboratory/MetaR/issues
http://campagnelab.org/publications/our-books/
http://campagnelab.org/publications/our-books/
http://campagnelab.org/software/metar/video-tutorials/

16 Introduction

Figure 1.2: The New Project
Dialog. Use this dialog to
create a new Solution. Solu-
tions are used to store mod-
els and express your solu-
tions to specific analysis prob-
lems. Select the “Solution
Project” project type on the
left panel, name the project,
and name the solution you
wish to create.

Overview
Create a Table
Column Groups Container
Column Groups
Column Group Usage
Example Column Group Container
Column Groups from a Table
Column Group Annotations
Table Viewer Tool

2 — Tables

2.1 Overview

Before you start an analysis, you will need to define Table nodes that represent the data files
needed in the analysis. MetaR explicitly models files that contain tables of data. This is done
so that you can easily refer to these tables, without having to remember where the original
file is located on your computer.
In this Chapter, you will learn how to

1. define a MetaR table,
2. adjust the types of the columns of the data described in the file,
3. annotate a table with groups,
4. link groups in column group usage.

2.2 Create a Table

To create a Table, right-click on a model in the project tab and select right-click New
o.c.metar.tables Table . This will create an empty table, as shown in Figure 2.1. Tables

have a name, a pathToResolve attribute and a list of columns. The following paragraphs
describe these attributes.

name
The table name is set automatically from the path when you use the file selection button.
You can change the name to match your analysis needs and make it easier to remember what
is in the table.

File Path (pathToResolve)
This attribute contains a path to the TSV file that you wish to analyze. The path may
contain references to path variables that will be automatically resolved before MetaR at-
tempts to load table information from the path. Path variable references can be written
as $a.b.c/data/file.tsv. Such a reference will require you to define the a.b.c path
variable name and associate it with a value on each machine where the table will be used.

18 Tables

Table <no name> ...
File Path

<no pathToResolve>
Columns

<no name>:

Figure 2.1: New Table. This
figure presents a freshly cre-
ated Table AST Root node.
You can use the button lo-
cated to the right, after the <no
name> red label (...), to open
a file selection dialog. Use this
dialog to locate a TSV file to
configure this table.

You can define path variables with the Preferences/Settings MPS menu (MPS Preferences
PathVariables on Mac, MPS Settings PathVariables on PC).

Columns
Columns is an attribute that presents the list of columns identified in the TSV file. Each
column has a name, a type, and may be annotated with a set of column groups (see Section 2.4
for details about column groups). MetaR supports the following column types, which map
to the R data types:

1. Numeric. Any number. Technically, can be a floating number or an integer.
2. String. A string of characters.
3. Boolean. A type that can only have two values: true or false.
4. Category. A type that can take only a limited number of values (e.g., {RED, GREEN,

BLUE} would be a category with these values, (RED, GREEN and BLUE in our example).
These types are automatically determined from the data in the table file. However, in case
the automatic algorithm failed for a table, you can change the types manually. To do this,
put the cursor over the name of the type in the column section, and use auto-completion in
the inspector to change to the desired type.

Figure 2.2 presents a MetaR table annotated with groups.

2.3 Column Groups Container

Column Groups Containers are used to define column groups and annotate these groups with
group usages. To create a new Column Group Container, right-click on a model and select
New o.c.tables.ColumnGroupContainer . This will create the empty container shown in
Figure 2.3. You need and should have only one container per model. The container will hold
the groups and group usages that you need across the MetaR Tables defined in the model.

2.4 Column Groups

Column Groups can be defined by pressing either on top of the « ... » (immediately
below Define Groups:), when the list of groups is empty, or with the cursor immediately
before the name of an existing group. Each group has a name and an optional set of group
usages. Figure 2.4 presents a new column group (group for short).

2.4 Column Groups 19

Table GSE59364_DC_all.csv ...
File Path

${org.campagnelab.metaR.home}/data/GSE59364_DC_all.csv
Columns

gene: string [ID]
mRNA len: numeric [<< ... >>]
genomic span : numeric [<< ... >>]
DC_normal: numeric [<< ... >>]
DC_treated: numeric [<< ... >>]
DC0904: numeric [LPS=NO, counts]
DC0907: numeric [LPS=NO, counts]
DCLPS0910: numeric [LPS=NO, counts]
DCLPS0913: numeric [LPS=NO, counts]
A_DC: numeric [LPS=NO, counts]
A_DC_LPS: numeric [LPS=YES, counts]
B_DC: numeric [LPS=NO, counts]
B_DC_LPS: numeric [LPS=YES, counts]
C_DC: numeric [LPS=NO, counts]
C_DC_LPS: numeric [LPS=YES, counts]
C2DC: numeric [LPS=NO, counts]
C2DCLPS: numeric [LPS=YES, counts]
C3DC: numeric [LPS=NO, counts]
C3DCLPS: numeric [LPS=YES, counts]

Figure 2.2: Example Table. The figure presents an example table annotated with groups.

Figure 2.3: Empty Column
Group Container. Use a col-
umn group container to define
column groups and associated
group usages. Place the cur-
sor over the « ... » symbol and
press to add a new group
or group usage. Name the
group or usage immediately
after creating it.

Column Groups and Usages

Define Usages:
<< ... >>

Define Groups:
<< ... >>

Figure 2.4: New Group. You
should name a new group im-
mediately after creating it.

<no name> used for << ... >>

20 Tables

Column Groups and Usages

Define Usages:
LPS_Treatment
ID
heatmap

Define Groups:
LPS=YES used for LPS_Treatment heatmap
LPS=NO used for LPS_Treatment heatmap
ID used for ID
counts used for heatmap

Figure 2.5: Example Group
Container. This example
presents a container with sev-
eral groups and group usages.

name

The name of the group is a string that should mean something in the context of your analysis.
Some MetaR analysis statements require specific group names to be defined in a model
container and referenced in an input table. Other groups will be created by you with
meaningful names to help identify columns that have certain properties, so that you can refer
to them collectively by the group name.

used for

Column groups can be annotated with a set of group usages. You can enter references to
usages already defined in the column group container following the used for keyword
shown in Figure 2.4. Press on the « ... » to insert the first group usage. Make sure
the usage is defined (its name should be visible in the Define Usages: section of the
container (see Section 2.5 to lean how to create a new Group Usage). You can bind a group
usage reference to a Group usage by using auto-completion (ctrl + to locate the name,
then pressing to accept one completion choice), or by typing the name of the group
usage directly (note that group usage names are case sensitive).

R Pressing before <no name> will not have the desired effect if you have not yet
named a group. Make sure you name groups immediately after you create them.

2.5 Column Group Usage

A Column Group Usage can be defined by pressing either on top of the « ... » (immedi-
ately below Define Usages:), when the list of group usages is empty, or with the cursor
immediately before the name of an existing group usage. When the list already contains one
or more group usages, you can add more by placing the cursor over a group usage name and
pressing . Keep pressing to add more empty group usages.

2.6 Example Column Group Container 21

Figure 2.6: Content of a
Sample Annotation Table
The SampleID column pro-
vides the name of the column
to which the groups should
be assigned. The Groups
column provides the names
of the groups, separated by
a comma, which will be as-
signed to the column identified
by SampleID.

Table

SampleID Groups
gene ID
DC0904 LPS=NO,counts
DC0907 LPS=NO,counts
DCLPS0910 LPS=NO,counts
DCLPS0913 LPS=NO,counts
A_DC LPS=NO,counts
A_DC_LPS LPS=YES,counts
B_DC LPS=NO,counts
B_DC_LPS LPS=YES,counts
C_DC LPS=NO,counts
C_DC_LPS LPS=YES,counts
C2DC LPS=NO,counts
C2DCLPS LPS=YES,counts
C3DC LPS=NO,counts
C3DCLPS LPS=YES,counts

2.6 Example Column Group Container
Figure 2.5 presents an example of a configured Column Group Container. This container
defines two groups LPS=yes and LPS=no, which can be used to annotate Table columns
that contain data about gene expression of samples treated with LPS or not. The group usage
LPS_Treatment is associated to both groups to indicate that they belong together and are
two kinds of treatment.

2.7 Column Groups from a Table
An alternative way to automatically create Column Groups and attach them to Columns at
the same time is to use a so-called annotation table. These tables are normal Table
nodes (created as specified 2.2) with a special structure and content. When created, MetaR
is able to recognize them and allows the user to use these tables to annotate other tables.

The structure of an annotation table requires the following two columns:
• SampleID: values of this column are sample names
• Groups: values of this column are comma-separated lists of group names

When annotation tables are available in the current model, the user can
1. open the Table to annotate
2. use the "Use Column Groups From Table: <table name>" intention () when the

cursor is on top of the Table node
This way, Sample IDs are matched with the column names and the groups listed in the same
row are attached to the corresponding Column. In addition, if the groups are not defined
in the ColumnGroupContainer, they are created in the annotation process. The Column
GroupContainer is also created if it does not exist.

22 Tables

To see how this intention works in practice, we will create the same groups shown
in Figure 2.2 using an annotation table. To do that, we firstly need to create a TSV file
with the content shown in Figure 2.6. The next step is to load this table in a Table node
(Figure 2.7). Finally, we invoke the “Use Column Groups From Table: AnnotationTableFor
GSE59364_DC_all.cvs” intention as shown in Figure 2.8 to apply the group names from the
table to the destination Table. These steps will result in exactly the same annotated table
shown in Figure 2.2.

Figure 2.7: Table with Samples and Groups. An annotation table loaded as Table node.

Figure 2.8: Intention to Annotate a Table using another Table

2.8 Column Group Annotations 23

2.8 Column Group Annotations

Sometimes, a covariate is a continuous variable that can take different values across samples.
This kind of covariate can also be used to estimate linear models (see Chapter 7 and 8).

MetaR 1.3 supports continous covariates. Instead of creating a Column Group for
each possible value of the covariate, you can indicate that values of the column group are
determined using a special type of table called Covariate Table. A covariate table is a normal
Table node in metaR with the following characteristics:

1. a column annotated with a group called "sample-key",
2. values of this sample-key column must match the column/sample names of the primary

table,
3. one or more additional columns from which covariate values are extracted.

Figure 2.9 shows a simple covariate table with two columns: the SampleName column is
marked as the sample-key. The Age column provides the age covariate values, for each
sample identified by SampleName.

Table AgeAnnotation.tsv ...
File Path
${org.campagnelab.metaR.home}/data/AgeAnnotation.tsv

Columns
SampleName: string [sample-key]
Age: numeric

Figure 2.9: Sample Covariate Table. A covariate table must have a column annotated
with the sample-key group, whose values are the sample names of the table that will be
annotated with the Covariate table. The other columns hold the values that will be associated
to each sample when they are selected.

A covariate table can be associated to a column group by pressing [at the end of the
group in the editor or by using the intention shown in Figure 2.10. The annotation added to
the group allows to refer to a covariate table in the current model and then select a column
from that table with the covariate values (Figure 2.11).

2.9 Table Viewer Tool

R The TableViewer Tool was introduced in MetaR version 1.3.

The content of a Table can be inspected with the Table Viewer Tool distributed with
MetaR. The tool adds to the MPS interface the capabilities to load the table’s content and
show it in a graphical context. Wherever a table name appears (in a Table node or in an
Analysis script, see Chapter 3), the tool can be opened to see the rows and columns of that
table along with their values. Figure 2.12 shows how to activate the tool on a Table node.

24 Tables

Figure 2.10: Intention to Add a Covariate
Table Use this intention when the values of the
Age covariate are provided by in a secondary
table: the covariate table.

Figure 2.11: Column Group Annotation Using auto-completion (ctrl + in the no
table field, all the tables matching the covariate requirements are proposed. Once selected,
a similar action can be used in the no useCovariate field to select a column from that
table. Values from that column are matched with the samples when a statement needs to
build a linear model.

2.9 Table Viewer Tool 25

Figure 2.12: How to activate
the Table Viewer Tool. The
Table Viewer Tool can be ac-
tivated by right-clicking on
the Table and selecting “View
Content” from the menu. An
alternative way is to put the
cursor on the Table node and
pressing + T .

The first time it is activated, the tool appears at the bottom of the MPS window, as shown in
Figure 2.13.

The tool is immediately available for those tables directly loaded from the file system
(e.g. Table nodes) and their references. Other Tables become visible after an Analysis script
has been run and the content of the table has been created. In this latter case, the tool is
available after the first script execution (see Chapter 3). Note that in this case, if the structure
and/or content of a table changes, the Analysis script must be executed again before the tool
will show the latest table data.

26 Tables

Figure 2.13: The Table Viewer Tool in the MPS UI.

Figure 2.14: Visualization
Options for Table Viewer
Tool. Different visualiza-
tion options are available for
the Table Viewer Tool. By
right clicking on the tool
name in the Tool Buttons bar
(if not visible, select View

Tool Buttons from the MPS
menu), a user can explore
them and choose the one that
best fits a project needs. In our
experience, the floating mode
or the Docked/Pinned mode
with the panel on the right are
very effective.

2.9 Table Viewer Tool 27

Figure 2.15: The Table Viewer Tool. The tool displays the content of the selected table. At
the top, you can see the name of the table and the number of records loaded. Columns can
be resized and rows scrolled for a full visualization of their values.

The MetaR Analysis Root Node
Styles
Working with Tables
Define Sets of Ids
Subset Rows
Join Tables
Transform Table
Block with Selected Tables
Plotting Data

3 — Analyses

3.1 The MetaR Analysis Root Node

MetaR analyses are represented with an Analysis AST Root node. An analysis often imports
one or more tables, performs data transformations and writes a table or generates some plots.
You can create as many Analysis root nodes as needed in a model. You create an analysis
by right-clicking on a model and selecting New o.c.metar.tables Analysis . Analysis can
exist as direct child of a model, and for this reason is called a root node. Figure 3.1 presents
a new Analysis root node.

name
Each analysis has a name. You should name the analysis after creating it. The name you
enter will be shown in the Project Tab after the icon.

statements
An analysis contains a list of statements. You can enter new statements by typing between
the curly brackets { }.

To enter a specific statement, you can type the alias of the statement (for instance
import table). When you have typed a complete alias, the node will be inserted in place

Figure 3.1: New MetaR
Analysis Root Node. This
figure presents a freshly
created MetaR analysis root
node. You can press over
the « ... » to add Statement
nodes to the analysis. Use
auto-completion to discover
which types of statements are
available.

Analysis <no name>
{

<< ... >>
}

30 Analyses

of the alias. Note that there is no actual indication that the text you are typing matches a
valid alias. You need to finish typing the full alias before the node is substituted for the alias.
The text you type will remain red until the substitution occurs even if the text is matching a
valid alias. See Figure 3.3.
The following sections describe the kinds of statements offered by the MetaR org.campagne
lab.MetaR.tables language. The simplest way to learn which statements are supported
by the release of MetaR that you are using is to use auto-completion. Figure 3.2 provides a
snapshot of the auto-completion menu when looking for statements to insert in the Analysis
statement list.

Figure 3.2: Auto-completion Dialog for Statements. This dialog is obtained by placing
the cursor where a Statement is valid, and pressing ctrl + .

Analysis Typing aliases tutorial
{

import
import table <no table>

}

Figure 3.3: Typing Statement Aliases. The user has typed “import” on the third line. This
text is a prefix of the import table statement, but is shown in red because the alias is not
yet complete. The fourth line shows the import statement which is substituted to the text
when the user has just finished typing “import table”, the complete alias of the statement.
Note that pressing immediately after import will create the node if the prefix “import”
matches a single type of node in the languages imported in this model.

3.2 Styles

MetaR comes with a styles language that allows to customize the graphical aspects of plots
and files generated by statements. A Style is represented by a root node in the model with
a given name.

3.2 Styles 31

To create a Style, right-click on a model in the project tab and select right-click New
o.campagnelab.styles Style . This will create an empty Style, as shown in Figure 3.4.

Style <no name> extends <no extends> {
<< ... >>

}

Figure 3.4: New Style. A newly created Style AST Root node.

Style nodes are identified by a icon. A Style is essentially a container for style items.
Items are well-defined settings that are applied by MetaR during the rendering of a graphical
object. Figure 3.5 shows a snapshot of the auto-completion menu when looking for items to
add to a style. All possible style items are shown because this style is not yet bound to a
specific statement.

Figure 3.5: Adding Style Items to a Style. A Style is a container for Style Items. By using
auto-completion ctrl + , style items can be added to the node.

Styles can extend other styles, which provides an ability to modularize appearance. This
is useful if you need to build collections of plots, and most plots have a subset of style
attributes, but the title of each plot or the X or Y variable changes. You would define the
common style attributes in a style, and extend this style each time you need to specialize the
style.

3.2.1 Binding Styles to Statements

In order to use a Style, you have to bind a statement to it. There are different approaches
you can follow to create this binding and the choice depends on your needs and flexibility.

The simplest way to create a style and bind it to a statement is to use the intention "Create
New Style" available on compatible statements as shown in Figure 3.6. This intention will

32 Analyses

create a new style and bind it to the statement. This has the advantage that the style items
are immediately restricted to only the items compatible with the statement.

Figure 3.6: Create New Style Intention on Statements. The user has pressed option +

on a statement that can be bound to a style. By selecting the Create New Style intention, a
new default style is created in the model and bound to the statement.

Once bound to a statement (or more than one), the list of items that can be added to the
Style is restricted to the ones compatible with the statement(s). For instance, if the style
shown in Figure 3.5 is bound to a statement that uses only a Color Palette and some kind of
border drawing, the auto-completion menu will appear as shown in Figure 3.7.

Figure 3.7: Style with Restricted Items. A subset of Style Items is displayed in the
auto-completion menu when the Style is bound to a statement.

However, styles can be created independently from statements and bound at a later time.
In this case, the list of styles visible to a statement in the auto-completion menu is limited
to the compatible styles available (see Figure 3.8). A style is defined compatible with a
statement if its items or a subset of them are used by the statement.

Figure 3.8: Styles visible from a Statement. A statement can be bound only to Styles that
define items compatible with the statement.

A library of Styles could be created and reused across multiple Statements, Analyses or
even Models. The capability to extends other Styles promotes reuse, reduces redundancies
and allows to keep the number of Styles in a model at a minimum.

3.3 Working with Tables 33

Figure 3.9: New Write
Statement. Use this state-
ment to write the content of a
table to a file.

write <no table> to "<no path>" ...

3.3 Working with Tables

3.3.1 Import Table

The import table statement makes it possible to import a table, defined in the model,
into the analysis. The columns of the imported table will become visible to the statements
that follow the import. You can create an import table statement by typing the alias import
table on an empty line of Analysis. Once you have bound the reference to a table, the
import statement will look like this: import table SomeData . The name in green is the
name of the table the statement imports. See Section2.2 to learn how to create a Table Root
node.

table
The table attribute is a reference to an AST root node. You can set this reference by typing
the name of the table you wish to import, or by using auto-completion ctrl + to locate
the table AST root node.

3.3.2 Write Table

MetaR analyses can create new tables. You can write the data in these tables to a file using
the write statement (see Figure 3.9 for a new write statement). The write statement has
two attributes: table and filename.

table
This reference should be set to the table that you want to write to a file.

output
The output should be set to a filename where you want the data contained in the table to be
written. Notice that output has a button to let you select the output filename.

3.3.3 Identify a Set of Columns

Several types of statements require the user to select one or more columns of a table. MetaR
provides several ways to select a set of columns.

• You can use the columns node to identify a set of columns.
• You can use the group node to name a single group, and identify all columns annotated

with this group.
• You can use the groups node to name a set of groups, and identify all columns

annotated with any of these groups.
Each strategy identifies a set of columns, which may contain one or more columns.

34 Analyses

define Set of IDs <no name> {
<< ... >>

}

Figure 3.10: New Set of Ids Statement. Use
this statement to define a custom set of ids.

define Set of IDs data1 {
a b c d e f g h i j k d5 d6 d7

}

Figure 3.11: Example of a user defined Sets
of Ids. The set contains 14 elements with IDS
named a-d7.

3.4 Define Sets of Ids

You can use this statement (alias define Sets of Ids) to define a custom set of ids.
Figure 3.10 shows a new define Sets of Ids statement. Sets of ids can be used draw
Venn diagrams (see Section 3.9.6), or to select rows of tables with the subset statement
(see Section 3.5). To create a new set, use the define statement and choose set of ids
with auto-completion.

name
The set of ids must have a name. The name is used to refer to this set of ids in other parts of
the analysis.

ids
By pressing with the cursor over the « ... » attribute you can add a new id in your set.
To add another id, you just have to press again . Figure 3.11 shows an example of Sets
of Ids.

3.5 Subset Rows

You can use this statement (alias subset rows) to filter a table and produce a new table with
a subset of the rows of the input table. Figure 3.12 shows a new subset rows statement.

subset rows <no table> filter how? -> subset Figure 3.12: New Subset
Rows Statement. Use this
statement to filter the rows of
a table.

{
import table GSE59364_DC_all.csv
define Set of IDs GeneList {

MAPK PSEN1
}
subset rows GSE59364_DC_all.csv with IDs keep rows matching any ID in GeneList -> for geneslist

subset rows GSE59364_DC_all.csv when true: $(genomic span) > 20000 -> genomic span>2000
}

Figure 3.13: Subset Rows Examples. This figure illustrates the two alternatives available
for filtering rows: by expression (with when true:, or with a set of ID values).

3.5 Subset Rows 35

table
The input table reference must be set to a table. The table must be either imported or
produced by another statement.

filter
The filter determines which rows are kept. Use auto-completion to select one of the alterna-
tives:

1. when true: will keep a row when the boolean expression following when true:
evaluates to true.

2. with IDS will keep a row when the value of the column marked with group ID exists
in the list provided as an argument. See the define statement to create a list of IDs
in Section 3.4.

subset
The output table is called subset by default. Feel free to rename this table to better match the
data in it.

3.5.1 Example
Figure 3.14 presents examples of subset row statements.

{
import table GSE59364_DC_all.csv
define Set of IDs GeneList {

MAPK PSEN1
}
subset rows GSE59364_DC_all.csv with IDs keep rows matching any ID in GeneList -> for geneslist

subset rows GSE59364_DC_all.csv when true: $(genomic span) > 20000 -> genomic span>2000
}

Figure 3.14: Subset Rows Examples. This figure illustrates the two alternatives available
for filtering rows: by expression (with when true:, or with a set of ID values).

3.5.2 Boolean Expressions
One form of the subset rows statement accepts a boolean expression to determine which rows
to keep. Boolean expression have one of two values: true or false, and can be constructed by
comparing values with an operator. The following operators are supported by MetaR:

• $(column) The value operator evaluates to the value of the column in the row currently
considered.

• expr1 == expr2 true when expr1 evaluates to the same value as expr2.
• expr1 != expr2 true when expr1 does not evaluate to the same value as expr2.
• expr1 | expr2 true when expr1 is true or expr2 is true (boolean or. either one of expr1

or expr2 needs to be true for the result to be true).
• expr1 & expr2 true when expr1 is true and expr2 is true (boolean and, both expre1

and epr2 must be true for the result to be true).
• expr1 < expr2 true when expr1 evaluates to a value less than expr2.
• expr1 > expr2 true when expr1 evaluates to a value greater than expr2.

36 Analyses

join (<no table>) by -> <no name> Figure 3.15: New Join State-
ment. Use this statement to
join two or more tables into
one.

• expr1 <= expr2 true when expr1 evaluates to a value less or equal than expr2.
• expr1 >= expr2 true when expr1 evaluates to a value greater or equal than expr2.

R MetaR infers the type of the expressions that you enter and will report type errors if
the value of some values are not compatible with the test that your perform.

3.6 Join Tables
When you perform data analysis, you often need to combine data from different tables into
one. This operation is called table joining. MetaR provides a powerful join statement that
helps join an arbitrary number of tables. The alias of the statement is join. Figure 3.15
presents a newly created join statement. Join has three attributes: input tables, by and
output table.

input tables
Use this attribute to enter references to tables you need to join. You can press with the
cursor inside the parentheses to create references to additional input tables (either imported
or created in the analysis up to that point).

by
Use the by attribute to specify how to join the input tables. Joining tables requires knowing
which rows of the input tables go together. This is done by identifying a set of columns
whose values must match across rows of the input tables that go together. See Section 3.3.3
to learn how to select groups of columns in MetaR. You can select one of the following
joining strategies as value of the by attribute:

• by columns: The same column name must be defined in all the input tables.
• by group: If each table has exactly one column annotated with this group, the names

of the columns do not need to be the same. Otherwise, if more than one columns is in
the group, their names must match across all the tables.

• by groups: Similar to group, but with any (>=1) number of groups. Press to
insert new group references.

The group by columns are used to calculate a list of values. When rows of the input tables
have the same group by values, they are joined in a single row, and the result put in the
destination table.

R The join statement will create new columns if the input tables have columns with
the same name. In this case the shared columns are renamed “colname.TableName”.
Place the cursor on result and look at the column preview in the inspector to see which
column names are generated by a given join statement.

3.6 Join Tables 37

result
The output table is called Results by default. Feel free to rename this table to match the
content of the destination table. Open the to see which columns will result from
the join. Notice that the column groups are transferred to the columns of the output table.

3.6.1 How Join works
The output table produced by the join statement can be very different, depending on the
strategy selected to join the input tables and their structure. The statement takes also care to
produce unique columns from columns common to all the input tables but not used in the
joining strategy. To explain how join works we will apply two different strategies to the
input tables (named A and B) presented in Figure 3.16 and check the structure and content
of the output table.

Table A
Gene Column1[ID] Column2

Table B
Gene Column2 Column3
Ge4 1 78 Val1
Ge2 3 13 Val3
Ge1 4 44 Val4

Ge1 Val1 34
Ge2 Val2 452
Ge3 Val3 113

Column4[ID]

Figure 3.16: Sample Input Tables for Join Statement.

Do note that the two tables have columns in common (Gene and Column2) and that each
table has a column annotated with a group named ID (Column1 in table A, Column4 in table
B).

join by column
As first strategy, we join A and B by the column Gene. The results table generated by join
is shown in Figure 3.17.

Table Results
(by Column Gene)

Gene Column1 Column2.A Column2.B Column3

Ge1 Val1 34 4 44 Val4

Column4

Ge2 Val2 452 3 13 Val3

Figure 3.17: Results Table for Join using by Column Strategy.

If we analyze the structure of the table, we note that:
• there is only one Gene column (the one used for joining)
• Column2, that was present in both the input tables, was split in two columns named

Column2.A and Column2.B
• the rest of the columns are the same coming from their respective input tables

Looking at the table’s content, we note that:
• rows from input tables with a matching value in the Gene column were merged into a

single row.

38 Analyses

• all the other columns keep their original value from the source table with respect to
the Gene column’s value

join by group

Our second strategy is to join A and B by group ID. As shown in Figure 3.16, there are two
columns, one in each input table, annotated with such a group and they have different names.
The join statement is able to work even in this case by matching the values of these two
columns. The results table generated by Join is shown in Figure 3.18. Again, let’s go over
the structure of the table:

• Gene, that was present in both the input tables but this time not used as joining column,
was split in two columns named Gene.A and Gene.B

• Column2, that was present in both the input table, was again split in two columns
named Column2.A and Column2.B

• the rest of the columns are the same coming from their respective input tables

Table Results
(by Group ID)

Column1 Gene.A Gene.B Column2.A Column2.B

 Val1 Ge1 Ge4 34 1 78 Val1

Column3

 Val3 Ge3 Ge2 113 3 13 Val3

Column4

Figure 3.18: Results Table for Join using by Group Strategy.

Looking at the table’s content, we note that:

• rows from input tables with a matching value in Column1 from A and Column4 from
B were merged into a single row

• all the other columns keep their original value from the source table with respect to
their matching column’s value

3.6.2 Example Join

{
import table GSE59364_DC_all.csv
import table another Table
join (GSE59364_DC_all.csv , another Table) by group ID -> Results

}

Figure 3.19: Example of Join Statement.

Figure 3.19 presents an example of join statement. The statement joins two tables and
creates the Result table. If you open the , you will see a preview of the columns for
the result table (shown in Figure 3.20).

3.7 Transform Table 39

3.7 Transform Table

The statement transform table (alias transform) allows to transform columns of an input
table and produce a new table. Figure 3.21 shows a new transform statement.

table
Use this attribute to select a table to transform. You can press ctrl + to open the
autocompletion menu and display all available tables.

operations
A set of table operations, which can be used to transform the input table. See Figure 3.22 for
a list of operations available to transform a table. Operations include:

drop column This operation allows to delete a specific column. Press ctrl + to
open the autocompletion menu and display all available columns. Then press to select
one column. This column will be removed/dropped in the result table.

path= /Users/fac2003/R_RESULTS/table_Results_0.tsv name: Results table.name Results groups= LPS=NO,counts,LPS=YES,ID
Columns (38) :

C3DC.GSE59364_DC_all.csv : numeric [LPS=NO, counts]
C3DC.another Table : numeric [LPS=NO, counts]
C2DC.another Table : numeric [LPS=NO, counts]
DC0904.another Table : numeric [LPS=NO, counts]
mRNA len.another Table : numeric [<< ... >>]
B_DC.GSE59364_DC_all.csv : numeric [LPS=NO, counts]
mRNA len.GSE59364_DC_all.csv : numeric [<< ... >>]
B_DC.another Table : numeric [LPS=NO, counts]
A_DC.GSE59364_DC_all.csv : numeric [LPS=NO, counts]
DCLPS0913.GSE59364_DC_all.csv : numeric [LPS=NO, counts]
DC0904.GSE59364_DC_all.csv : numeric [LPS=NO, counts]
C2DC.GSE59364_DC_all.csv : numeric [LPS=NO, counts]
C_DC_LPS.GSE59364_DC_all.csv : numeric [LPS=YES, counts]
DCLPS0910.another Table : numeric [LPS=NO, counts]
B_DC_LPS.another Table : numeric [LPS=YES, counts]
DC_treated.another Table : numeric [<< ... >>]
A_DC_LPS.another Table : numeric [LPS=YES, counts]
gene.GSE59364_DC_all.csv : string [ID]
DC_normal.another Table : numeric [<< ... >>]
C3DCLPS.GSE59364_DC_all.csv : numeric [LPS=YES, counts]
C_DC_LPS.another Table : numeric [LPS=YES, counts]
B_DC_LPS.GSE59364_DC_all.csv : numeric [LPS=YES, counts]
C2DCLPS.GSE59364_DC_all.csv : numeric [LPS=YES, counts]
DCLPS0910.GSE59364_DC_all.csv : numeric [LPS=NO, counts]
A_DC_LPS.GSE59364_DC_all.csv : numeric [LPS=YES, counts]
DC_normal.GSE59364_DC_all.csv : numeric [<< ... >>]
C3DCLPS.another Table : numeric [LPS=YES, counts]
C_DC.another Table : numeric [LPS=NO, counts]
genomic span.GSE59364_DC_all.csv : numeric [<< ... >>]
C_DC.GSE59364_DC_all.csv : numeric [LPS=NO, counts]
C2DCLPS.another Table : numeric [LPS=YES, counts]
genomic span.another Table : numeric [<< ... >>]
A_DC.another Table : numeric [LPS=NO, counts]
DC_treated.GSE59364_DC_all.csv : numeric [<< ... >>]
gene.another Table : string [ID]
DCLPS0913.another Table : numeric [LPS=NO, counts]
DC0907.another Table : numeric [LPS=NO, counts]
DC0907.GSE59364_DC_all.csv : numeric [LPS=NO, counts]

Figure 3.20: Column Preview for Result Table. Notice that all these columns were shared
across the input tables because their name follows the pattern “colName.tableName”.

transform table<no table> -> transformedTable{

}

Figure 3.21: New Transform Table Statement. Use this statement to transform a table by
applying column operations.

40 Analyses

transform tableGSE59364_DC_all.csv-> transformedTable {
drop columnA_DC
drop columns which match span
drop column which have group LPS=YES
rename column:A_DC -> newName

}

Figure 3.22: Example of
Transform Table Statement.
This example show various ta-
ble operations available with
transform table.

drop columns which match This operation allows to delete columns which contains
a specific pattern. Type the pattern after the match keyword.

drop columns which have group This operation allow to delete columns which have
a specific group. To do so, press first ctrl + space to display the available group and to
select one group.

add column This operations allows to add a column in the result table. Start by
entering the name of the new column. The second argument must contain the expression
that will calculate the value that the new column will take for each row of the result table.
You may reference columns of the input table in the expression using the $ column selection
helper.

rename this operation allows to rename a specific column from the input table. Once
you have selected your column of interest, you just need to type a new name under the
(newName) argument.

result
The output table is called TransformedTable by default, but can be renamed as needed.
Use the inspector to see which columns will be produced when the transform statement is
executed.

3.8 Block with Selected Tables

Sometimes it can happen that many tables are created during your analysis and, at one point,
you might want to work with a restricted set of tables. The statement with tables allows
you to select specific tables defined in your analysis and execute metaR statements on them.
Figure 3.23 presents a newly created with tables statement. All tables created inside the
block will be available outside the block. The statement has two attributes: the list of input
tables and a statement list. Figure 3.24 shows an example of the with tables statement.

input tables
Use this attribute to select the tables you want to see inside the block. To do so, you can use
auto-completion and select tables defined in your analysis up to that point. The statements
included in the statement list will only see the tables defined in this list.

3.9 Plotting Data 41

statement list
Here you can use all statements defined in MetaR. Any tables or plots created in the statement
list will be visible after the block ends.

with tables (<< ... >>) for statements
{
<< ... >>

}

Figure 3.23: New With Tables Statement. Use this statement to work with a restricted set
of tables.

with tables (GSE59364_DC_all.csv, filtered) for statements
{
subset rows filtered with IDs keep rows matching any ID in P-value -> subset
join (subset, GSE59364_DC_all.csv) by group ID -> newjoin

}

Figure 3.24: Example of With Tables Statement.

3.9 Plotting Data
MetaR provides simple plotting capabilities1. The following types of plots are currently
supported:

• boxplot alias boxplot
• histogram alias histogram
• scatterplot: alias scatterplot and fit
• heatmap, alias heatmap
• multiplot alias multiplot, makes it possible to organize other plots in a matrix of n

columns by n rows.
• Venn Diagrams, alias venn
• UpSet plot, alias UpSet are a modern alternative to Venn Diagrams and make it easy

and effective to compare intersection of several sets of items.
• MA Plot, alias MA Plot are a type of quality control plot useful when looking at

high-throughput gene expression assays.
• T-SNE plots, alias t-SNE, are scatter plots following T-SNE dimensionality reduction.

Each type of plot statement will create a plot, identified with the icon when you are trying
to auto-complete a reference to a plot. Plot names are also colored with the same dark blue
as the icon.

Generated plots can be customized and refined by binding each statement to a style (see
3.2). A reference to a style is back-colored with the same turquoise color as the icon.

1These capabilities are simple, but can be extended very easily by adding new statements to draw other
types of visualization. This is a key advantage of using Language Workbench technology. See Section 14 to
learn how to create new statements.

42 Analyses

boxplot with <no col> -> <no name> no style Figure 3.25: New Boxplot
Statement.

3.9.1 boxplot
Figure 3.25 presents a new boxplot statement.

columns
Indicate one or more columns to plot. The values of the columns will be plotted as in-
dividual boxplots in the same graph. Press to define more than one column. Use
auto-completion to locate individual columns from the imported tables, or the tables created
by prior statements.

plot
The attribute after -> is a plot. Enter a name for the boxplot here. Plot names are colored
blue to make them easier to recognize.

style
If a style is bound to the box plot (see section 3.2), the statement will use a ColorPalette
item from the style to draw the plot. A Color Palette is an AST Root Node identified with
the icon.

MetaR comes with several pre-defined palettes and colors ready for use. Figure shows
the auto-completion menu for a Color Palette item listing the default palettes available.

Figure 3.26: Auto-completion menu with default Color Palettes.

You can create a new palette by right-clicking on a model and selecting New o.campagnelab.styles
Color Palette . Colors can be added to a palette and their order will matter in the rendering

of the plot. Figure 3.27 shows a Color Palette with some color items and the auto-completion
menu listing some of the default colors available.

There are two classes of colors you can use in a palette:
• Named Colors. New named Colors can be created by right-clicking on a model

and selecting New o.campagnelab.styles Color . A color is identified by the

3.9 Plotting Data 43

Figure 3.27: Auto-completion menu showing some default Colors and the ##RRGGBB
option. The auto-completion menu lists the visible Colors and #RRGGBB option. By
selecting this latter, you can create a custom color based on the Red Green Blue color
components (RGB).

icon and its name must be valid in the R language.
• #RRGGBB Colors. These colors can be created directly inside the Color Palette by

selecting the #RRGGBB option in the auto-completion menu for a Color value. The
color will be constructed from the combination of the Red, Green and Blue specified
in the code.

3.9.2 histogram

Use this statement to plot a histogram of the values of one column.

column

Indicate one column to plot a histogram for. Use auto-completion to locate the column from
the imported tables, or the tables created by prior statements.

plot

The attribute after -> is a plot. Enter a name for the histogram here. Plot names are colored
blue to make them easier to recognize.

style

The statement uses a ColorPalette item (see 3.9.1) from the associated style (see section
3.2) to draw the plot.

44 Analyses

3.9.3 scatterplot
Use this statement (alias scatterplot) to render a scatter plot of y (one column) vs x
(another column). This will create a simple scatter plot with the option of using a column of
the table to set the color of the points. Figure 3.28 presents a new scatterplot statement.

scatterplot <no table> x: <no col> y: <no col> color: <no color> -> <no name>

Figure 3.28: New Scatterplot.

x, y
Indicate which columns should be plotted. Use auto-completion to locate the x and y
columns from the imported tables, or the tables created by prior statements.

plot
The attribute after -> is a plot. Enter a name for the scatterplot here. Plot names are colored
blue to make them easier to recognize.

color
The color attribute is optional. Choose a column whose value will determine the color of
each point.

3.9.4 fit x by y
Use this statement (alias fit) to plot a scatter plot of y (one column) vs x (another column).
A linear fit is performed, and the r2 adjusted, and P-value corresponding to the linear
regression is shown on the plot. Figure 3.29 presents a new fit statement.

fit <no col> by <no col> with table <no table> -> <no name> no style

Figure 3.29: New Fit X by Y.

x, y
Indicate which columns should be plotted. Use auto-completion to locate the x and y
columns from the imported tables, or the tables created by prior statements.

plot
The attribute after -> is a plot. Enter a name for the scatterplot here. Plot names are colored
blue to make them easier to recognize.

style
The fit statement uses the following items from the associated style (see section 3.2) to
customize the scatterplot:

• Title. The main title on top of the plot.
• X label. A title for the x axis.
• Y label. A title for the y axis.

3.9 Plotting Data 45

• X range. Range of values for the x axis.
• Y range. Range of values for the y axis.
• Width. Width in pixels of the output image with the plot.
• Height. Height in pixels of the output image with the plot.

3.9.5 heatmap

Heatmaps are frequently used to visualize high-throughput data [Cook2007]. Use the
heatmap statement (alias heatmap) to construct a heatmap plot. Figure 3.30 presents a new
heatmap statement.

heatmap with <no table> select data by<no dataSelection>-> <no name> no style [
]

Figure 3.30: New Build Heatmap. Notice the intention “Add Annotations” attached to the
statement. You can use this intention to further customize the heatmap.

table
Specify the table that contains the data that will be used to draw the heatmap. Note that the
table must meet certain conditions. An error message will be displayed if these conditions
are not met:

• Some columns of the table must be annotated with at least one group whose usage
is “heatmap”. Such columns are used to provide data values for the heatmap. If you
don’t have a heatmap usage, just create one and add it to the groups you would like to
include on the heatmap.

• The columns of the table must be annotated with groups and group usages to make it
possible for you to use these group usages to construct a legend.

select data by
Use this attribute to customize the set of columns to plot on the heatmap. See Section 3.3.3
to learn how to select a set of columns.

plot
The <no name> attribute listed after -> makes it possible to name the plot that will hold the
heatmap. Use any name you like. This name will be used to refer to the heatmap plot, for
instance if you wish to assemble panels of different heatmaps into one figure.

style
The statement uses the following items from the associated style (see section 3.2) to cus-
tomize the heatmap:

• Color palette. The colors to use in the heat map (see 3.9.1).
• Draw border. A boolean value to enable or disable borders in the heatmap. A

value of true will draw a border. A value of false will not. By default, borders are
enabled.

46 Analyses

• Border color. The color to use for the border (see section 3.9.1 to check out how
to create/refer to colors). If not set, the default color is grey60.

C
2D

C
C

_D
C

D
C

LPS0913
D

C
LPS0910

A_D
C

C
3D

C
B_D

C
D

C
0907

D
C

0904
C

3D
C

LPS
C

_D
C

_LPS
C

2D
C

LPS
A_D

C
_LPS

B_D
C

_LPS

POU5F1P3
POU5FLC12
BC017818
FNK
PLK3
GADD45B
IER3
BC132896
BTG2
FMOD
AK024293
AK309664
AX746670
GSTA4
LOC338758

LPS_Treatment
LPS=no
LPS=yes

−3

−2

−1

0

1

2

3

Figure 3.31: Example of Heatmap Plot. This heatmap has been customized with annota-
tions. The LPS_Treatment group usage is shown in the legend, with two groups: LPS=yes
and LPS=no. The values plotted have been scaled by rows, and the rows clustered. Data are
from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59364.

annotations
You can use the “Attach Annotations” intention () when the cursor is on top of heatmap
to customize heatmap annotations. Figure 3.32 shows a heatmap statement with annotations.

heatmap with GSE59364_DC_all.csvselect data bycolumns: A_DC B_DC -> heatmap HeatmapStyle [
annotate with these groups:<< ... >>
scale values: <no scaling>
cluster columns:false cluster rows: false

]

Figure 3.32: Build Heatmap With Annotations. Annotations are shown after you have
triggered the “Add Annotations” intention.

annotate with these groups. You can use this attribute to select usage names that
should be listed in the heatmap legend. Listing a group usage will annotate each column of
data with the group that is associated to the usage.

scale values. You can choose to scale values by column or by row. Scaling will make
differences easier to see by using colors more effectively.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59364

3.9 Plotting Data 47

cluster columns: You can choose to cluster by colors or by rows by changing the
boolean values accordingly.

Example

Figure 3.31 presents a heatmap constructed with the build heatmap statement, using annota-
tions and row clustering.

3.9.6 Venn diagram

R The Venn diagrams were introduced in MetaR version 1.3.

Venn diagrams are useful to show how many elements exist in various intersections
among sets of elements [venn1880diagrammatic]. Use the Venn diagram statement
(alias venn) to draw a Venn diagram plot. Figure 3.33 presents a new Venn diagram
statement.

Venn diagram of { set <no name> from set of ids <no oneSetOfIds> with default color } -> <no name>

Figure 3.33: New Venn Diagram. Up to five sets can be shown on a Venn diagram. The
name of each set will be shown on the Venn diagram plot.

Venn diagram of { set set1 from set of ids data1 with Color : aquamarine
set <no name> from table <no table> when true: <expression> with default color

} -> <no name>

Figure 3.34: Sets type of Venn Diagram. Here you can see the two types of sets which can
be used for a Venn diagram: a user defined set and a set from an annotated table.

name
The name attribute can be specified immediately after the set keyword. A set must have a
name, which will be shown on the Venn diagram to identify this particular set.

set
Up to five sets can be shown on a Venn diagram. The data set are divided in two types:
ids from a user defined set contains only one attribute: set of ids. The set of ids

attribute must refer to a user defined set. see Section 3.4 to learn how to define new
sets of ids.

ids from an annotated table contains two attributes:
• table. This attribute must refer to a table annotated with an "ID" group on a

column that will provide identifiers for the set elements.
• expression. This expression defines how to select rows of the table to extract

ids for the set. The expression must return true when a row of the table is part of
the set. When this is the case, the value of the column marked with the ID group
is extracted and added to the elements of the set.

48 Analyses

R Notice that you can turn one type of ids into the other with auto-completion. place the
cursor on top of the set keyword and invoke ctrl + SPACE to switch the type of set.
Notice that the name and color attributes, if defined, are preserved.

color
The default color attribute listed after with makes it possible to customize the color
used to draw the set on the Venn diagram. By using auto-completion, a menu listing the
default colors available will appear. Default colors will be used for each set where a color
has not been defined.

plot
The <no name> attribute listed after -> makes it possible to name the plot that will hold the
Venn diagram. Use any name you like. This name will be used to refer to the Venn diagram
plot.

Example

5 61 3 3

10set2 set3

set1

Figure 3.35: Example of Venn Diagram with Three Sets.

Figure 3.35 presents an example of a Venn Diagram showing three sets.

3.9.7 multiplot

This statement (alias multiplot) makes it possible to assemble a plot as a matrix of m x n
plots. This is convenient if you would like to create a figure from panels of individual plots.
In addition, multiplot provides a preview of the multi-panel plot that you can turn on and off
at the click of a button. Figure 3.36 presents a new Multiplot.

plot
The plot name is shown immediately after -> (initially <no name>). Name the mutliplot to
be able to refer to it from other statements (such as render to make a PDF from it).

3.9 Plotting Data 49

multiplot -> <no name> [<no numColumns> cols x <no numRows> rows] Preview
<<emptyTable>>

Figure 3.36: New Multiplot Statement. Click on the Preview/Hide Preview button to toggle
the plot preview.

m cols x n rows
Define the number of columns and rows that you wish the multiplot to have. The product of
m and n determines how many plot references must be filled in to construct the multiplot.

Preview/Hide Preview
These buttons will make it possible to preview/ hide the preview for the multiplot. Note that
a preview is only available after you have run the analysis. If you don’t see the image being
refreshed after running the script, remember to hide the preview and show it again to refresh.

plot references
After you set the number of columns and rows, you need to link m x n references to plots that
you have already constructed. Do this in table attribute (shown as «emptyTable» initially).

Multiplot Example

Figure 3.37 presents an example of multiplot.

Figure 3.37: Example of Multiplot. This example shows a multiplot composed of two
columns and one row. In the preview, a fit x by y plot is shown on the left, and a heatmap on
the right.

50 Analyses

3.9.8 render

This statement (alias render) makes it possible to save a plot or a multiplot in a local file
according to a selected output format and style. Figure 3.38 presents a new Render.

render <no plot> as named "<no path>" ... no style

Figure 3.38: New Render Statement.

plot

The <no plot> attribute listed after the alias allows you to select the plot or multiplot to
render.

rendering format

The rendering format is the format in which the plot will be stored on the file system. The
current version of MetaR allows to use only PDF as format.

path

The <no path> attribute has to be set to a filename where you want the rendering is stored.
Its extension must be compatible with the selected format (e.g. ".pdf" for PDF). If only a
filename is specified

3.9.9 UpSet plot

UpSet plots have been introduced in [Lex2014] and are supported in MetaR since release 1.8.
Such plots make it effective to get a sense of the intersection among many sets. Figure 3.39
presents an illustration. In MetaR, UpSet plots can be created with the UpSet statement. The
statement accepts the definition of an arbitrary number of sets to be compared, and produces
a plot. The sets can be defined as sets of IDs, or as predicated over a table (see Figure 3.40).

3.9.10 MA Plot

MA plots are a useful quality control type of plot. An MA plot is a scatterplot of log fold
change versus intensity of expression. The plot is useful to detect systematic bias in fold
change across genes. It has been popularized with microarray technology which used to
have regions of the array that could affect many gene expression estimates and show bias.
Figure 3.42 (top) presents an MA plot constructed in MetaR. Such a plot can be created with
the MA Plot alias, available when you import the org.campagnelab.metar.plots language.
See Figure 3.41 for a newly created MA Plot statement. The bottom of Figure 3.42 illustrates
how individual points of an MA Plot can be labeled.

Table

MA plots take data from a MetaR table. Enter a reference to a table imported in the analysis.

3.9 Plotting Data 51

11570

2988

2482 2388

394

0

2500

5000

7500

10000

12500

In
te

rs
ec

tio
n

S
iz

e

●

●

●

● ●

●

●

●

●

LPS_20

LPS_10

combined

05000100001500020000

Set Size

Figure 3.39: UpSet Example Plot. This figure illustrates an upset plot. It was constructed
with three sets derived form a table (construction shown at the bottom of Figure 3.40.

52 Analyses

Analysis UpSetTutorial
{
// with defined gene lists:
define Set of IDs List1 {

A B C
}
define Set of IDs List2 {

A B D E F
}

UpSet { set List1
set List2

} -> plot

// with elements of a table:
import table GSE59364_DC_all.csv
UpSet { ids from table when true: GSE59364_DC_all.csv $A_DC_LPS > 20 name of set: LPS>10

ids from table when true: GSE59364_DC_all.csv $A_DC > 10 name of set: LPS>20
ids from table when true: GSE59364_DC_all.csv $A_DC > 10 & GSE59364_DC_all.csv $C2DC > 30

name of set: combined

} -> upset

render upset as PDF named "upset.pdf" ... no style

}

Figure 3.40: UpSet Plot Construction. This figure illustrates the two methods available to
construct UpSet plots. At the top, we use defined sets of IDs and simply reference them to
create the plot. At the bottom of the analysis, we import a table and define each set with
an expression over columns of the table. The expression must evaluate to a boolean which
indicates if the row of the table is included in the set, or not.

MA plot with stats from <no table> red when FDR<= 0.20 label set: <no geneList> with <no geneName> -> <no name>
<no useStyle>

Figure 3.41: MA Plot Statement. A new MA Plot statement is shown before configuration.

FDR threshold
You can adjust this threshold to determine which genes/elements of measurement are consid-
ered significantly changes, and should be colored red on the MA plot.

Label set
Use this attribute to reference a gene list (MetaR set of ids) that identifies genes to be labeled.
The identifiers provided in the gene list must match those found in the table marked with
group ID.

Plot
The attribute shown as <no name> in Figure 3.41 let you define a name for the plot that
will be produced by the statement. This name can be used to combine the MA Plot with
other plots in a multiplot statement (see Section 3.9.7).

Style
See Section 3.2 for an introduction to styles. The MA plot accepts the following style items:

• XRange Determines the range of the X axis.
• YRange Determines the range of the Y axis.
• Title Let’s you configure the title of the plot

Inspector

The inspector offers several attributes to customize the MA Plot:

3.9 Plotting Data 53

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●●

●

●

●●

●

●

●
●

●

●

●

−5 0 5 10 15

MA Plot

log2 expression

lo
g 2

 fo
ld

 c
ha

ng
e

−
9.

5
−

8.
0

−
6.

5
−

5.
0

−
3.

5
−

2.
0

−
0.

5
0.

5
1.

5
2.

5
3.

5
4.

5
5.

5
6.

5
7.

5
8.

5
9.

5

PLEK

{
define Set of IDs GeneList {

PLEK
}
MA plot with stats from Results red when FDR<= 0.20 label set: GeneList with ID -> MA MAPlotStyle

render MA as PDF named "MA.pdf" ... no style

}

Figure 3.42: Example of MA Plot. An MA plot constructed with MetaR is shown. The top
part of the figure shows the plot. The second part shows how the plot is created in MetaR.
Note that in this example, a gene list is used to identify a gene to be labeled on the MA
Plot. The horizontal dashed line represents no change in gene expression (fold change = 1,
log2 fold change = 0). The vertical dashed line represents the minimum gene expression
threshold filter.

54 Analyses

Columns
A first group of attributes help customize the columns the plot is built from. Default columns
are set for a table of statistics produced with Limma Voom, but if you use another statistical
test, you can adjust the log2 fold-change, average expression columns, and significance
columns.

minExpressionThreshold
You can configure the position of the vertical dashed line by changing the value in the
minimum AverageExpression attribute.

3.9.11 t-SNE
The t-SNE statement performs dimensionality reduction on a table and plots a projection
(where each row of the table is represented as a point on a 2D page). t-SNE plots are
frequently used to cluster and visualize high-dimensional data. They are a strong alternative
to Principal Component Analysis (PCA). See citeVanDerMaaten2008 for details about the
t-SNE approach.

In order to use the t-SNE statement, you first need to import the language org.campagnelab.metar.plots.
You can do this by pressing cmd + L and typing the metar.plots to locate the language.
After importing the language, you can locate the statement by typing t-SNE. Figure 3.43
presents a newly created tSNE statement. A t-SNE statement offers the following editable
attributes:

input table
You must link this attribute to a table of data. The table must contain some columns
annotated with the group "counts". This group is used to identify which columns to consider
for dimensionality reduction. Any other columns of the table will be removed before running
the t-SNE approach on the table.

plot
The first attribute to the right of -> is a plot. You can use this slot to anem name the t-SNE
plot produced by the statement.

result table
The second attribute to the right of -> is a result table. The table will contain the coordinates
TSNE1 and TSNE2 for each row of the table, a row identifier (in a column caller sample)
and a cluster identifier. Using the table is optional since you may find it sufficient to use the
plot, with colors determined automatically by clustering, but the table makes it possible to
prepare scatterplots where the color is controlled by other data attributes. It is for instance
common to use the sample id to join the tSNE result table with an annotation table that also
contains the sample/row identifiers.

speed/accuracy
This attribute controls the tradeoff between speed and accuracy. Use zero for the exact
method, larger values for faster convergence.

3.9 Plotting Data 55

T-SNE plot <no table> -> <no name> , <no name> {
speed/accuracy (0 exact, default 0.5, larger is faster) 0.5
perplexity 50
number of iterations 1000
check duplicates (recommended, slower for large tables) true
random seed 122332
number of clusters 1

}

Figure 3.43: New t-SNE statement.

perplexity
This attribute controls the t-SNE perplexity parameter. See http://distill.pub/2016/
misread-tsne/.

number of iterations
How many iteration to run before stopping.

check duplicates
It is not recommended to include exact duplicates in the input table. This attribute controls
checks for exact duplicates. Note that the check can be slow for large table, so you can
disable it.

random seed
A random seed to make the analysis reproducible.

number of clusters
Following t-SNE reduction, a k-means clustering is done with the specified number of cluster
to assign each row a cluster id. The coordinates TSNE1 and TSNE2 are used for k-means
features. After looking at the plot with a number of cluster set to 1 you should be able to
determine how many clusters you see in the data. Setting this number in this attribute and
re-running will label each row with a cluster id in the output table.

http://distill.pub/2016/misread-tsne/
http://distill.pub/2016/misread-tsne/

Pre-requisites
Configuring Docker
Running with Docker

4 — Docker Integration

The integration with Docker helps with the reprducibility of your analyses. Installing
packages with R does not make it possible to specific exactly the version of the package
that you need for an analysis. While it is possible to always install the latest version of a
package, the behavior of some packages will change over time. For this reason, it is useful
to build snapshots of the R packages used during analysis and report the version number of
the snapshot.

4.1 Pre-requisites
You will need a working docker installation on your machine before you can run MetaR
analyses with Docker (see http://docs.docker.com/installation/).

4.1.1 Mac OS
Mac users will find it convenient to download and install the docker native installation. After
installation, open a Terminal and type docker pull fac2003:rocker-metar:latest

4.1.2 Other Platforms
Other users should refer to documented installation steps for their platform.

4.2 Configuring Docker
Docker integration can be configured using the MPS Preferences. Open Preferences (Setting
on Windows) and locate the Docker configuration (use the search box with the docker
keyword). You will be presented with the following dialog shown in Figure 4.1.

path to docker executable
This field must provide a path to a valid docker executable. On linux, try which docker in
the shell. On Mac, start a Terminal and type which docker and copy the location to the
field.

http://docs.docker.com/installation/

58 Docker Integration

Figure 4.1: Docker Configuration Dialog. This dialog is available under MPS Prefer-
ences/Settings.

docker options

These are the options necessary to connect to the docker server. If you installed docker
native, you don’t need to enter any options. On other platforms, open the docker application
and start the terminal with the File Open Docker Command Line Terminal Window . In the
window, type echo ‘docker-machine config‘ and copy the line printed to the field.

image name

This is the name of the docker image that you wish to use with MetaR. Keep the default, or
enter a customized image name here. Customizing the image is useful if you need to install
additional packages than the ones we use during our training sessions. If you create a new
image, make sure you use fac2003/rocker-metar in the FROM field. Images that do
not build on fac2003/rocker-metar are not supported at this time.

R Note that you can specify an image tag/version number. Append a colon (:) and the
tag after the image name. For instance, use fac2003/rocker-metar:2.1.0 to run
the rocker-metar image packaged with MetaR 2.1.0.

R Note that specifying a tag is a good idea if you need to reproduce exactly an analysis
in the future. Omitting the tag will always get the latest version of the image, which
may change over time.

always use docker

This checkbox can be use to force the use of Docker by default when running an Analysis.
This is convenient if you know that you configuration is correct and want to run all analyses
with docker.

4.3 Running with Docker 59

Figure 4.2: Run With
Docker. Right-click
on an Analysis and do
Create <analysis name .

You will be presented with
the Run Configuration cus-
tomization dialog. Check
the box to run with docker.
Disable the check-box to
run directly against the R
installation on your computer
(this behavior was the default
prior for MetaR 1.3-).

4.3 Running with Docker
When docker is successfully configured, you can specify to use the docker image when
running a MetaR analysis. See instructions in Figure 4.2 to see how to configure running
insider a Docker container.

Single Cell Normalization

5 — SCnorm

5.1 Single Cell Normalization

SCnorm is a method developed to normalize single cell RNA-Seq data [bacher2017scnorm
]. It is integrated into MetaR to facilitate normalization of bulk or single cell RNA-Seq data.
In order to use SCnorm in MetaR, you need to import the org.campagnelab.metar.scnorm
language. Once imported, you will be able to use two statements in a MetaR analysis:

5.1.1 check count depth

This statement (alias check count depth) will produce a PDF with diagnostic plots
showing the density of slopes for the curves log gene expression vs. log depth of sequencing
(as shown in Figure 1 of [bacher2017scnorm]. Figure 5.1 shows a newly created statement.

check count depth <no table> -> / <no outputPrefix> (result in /Users/fac2003/R_RESULTS/_count-depth_evaluation.pdf)

Figure 5.1: New Check Count Depth Statement. This statement produces diagnostic PDF
with density of slopes for gene expression vs depth of sequencing. The statement indicates
where the PDF will be written (somewhere under the directory indicated in the R_RESULTS
path variable.

input table

A table of data, with some columns marked with the counts attribute. Only counts columns
will be normalized and available in the output in normalized form. One column should have
the ID attribute and will also be copied to the normalized table.

prefix

The prefix is a string used to name the PDF output. The name of the PDF is derived from
the prefix, followed by “_count-depth-evaluation.pdf”. You can see the filename where the
PDF will be written in parenthesis following the string “result in”.

62 SCnorm

Inspector
Attributes available under the inspector include:

filter cell proportion parameter. This parameter controls the threshold that determines
when the normalization process has converged. A default value of 0.1 is suggested, but can
be adjusted if the process fails to converge.

5.1.2 SCnorm
The SCnorm statement normalizes data with the R SCnorm package to bring slopes back to
zero. The SCnorm statement has the following attributes:

input table
A table of data, with some columns marked with the counts attribute. Only counts columns
will be normalized and available in the output in normalized form. One column should have
the ID attribute and will also be copied to the normalized table.

condition
You may specify an optional column usage. This usage must annotate a group specific on
a counts column of the table. If specified, normalization will be performed in the groups
defined by values of the usage.

K/Scan
The attribute whose default value reads “Scan values of K” is the default and recommended
option. It will scan values of K until one is found that results in slope smaller than the
threshold (see inspector attributes).

You can specify a fixed value of K by switching this attribute to the value K= and entering
a value of K. This can speed up processing when you know which value should be used.

output table
The output table can be named. The output table will contain the normalized data for counts
columns as well as the identifier (group ID) column.

SCnorm <no table> Scan values of K with condition: <no condition> -> Normalized

Figure 5.2: New SCnorm statement. This statement is used to normalize data with SCnorm.

Usage
IR Preferences
Tool
pause instant refresh
Sessions

6 — Instant refresh

Instant Refresh (IR) was introduced in MetaR 2.0. This feature allows users to make changes
in their scripts and see results updated seamlessly. Instant refresh supports both MetaR
Analysis and composable R scripts. Changes in Analyses or RScripts are automatically
detected and copied to a new Analysis node called Instant refresh. Based on config-
urable settings, either a normal run configuration with a local R installation, or a new docker
container is started to execute the instant refresh code. Executing the code regenerates
tables or plots and updates the display. Users can follow progress of the refresh in the
Instant Refresh tool. This Chapter describes this feature in more details. Instant Refresh was
developed by Alexander Pann during a summer internship in the lab.

6.1 Usage

IR is not activated by default. In order to enable it, you must go in the preferences (see Section
6.2). Once activated, all the existing Analyses and RScripts are automatically registered for
instant refreshing when a project is opened. For newly created analyses and scripts (i.e. after
the activation and without restarting MPS), use the "Register for Instant Refresh" intention
() to enable the functionality on the new code. To allow re-executing code in RScript nodes
make sure that you are using the install or load expression (type installOrLoad and use
auto-complete) for loading R libraries in the script (see Section 15.3). This expression is
needed for locating all the libraries that need to be loaded when the code is re-executed. It
should be used as a replacement for the R commands install.packages, library or
require.

R Note that not all expressions are considered changes when calculating the list of
changes to be re-executed. Some nodes are ignored including empty lines, comments
and Save Session expressions.

64 Instant refresh

Analysis Instant refresh
{

import table GSE59364_DC_all.csv

[transform table GSE59364_DC_all.csv -> transformedTable {
drop column A_DC

}

]

[preview table transformedTable [4 cols x 5 rows] Hide preview no style

 gene mRNA len genomic span DC_normal

1 Total 34421746.00

2 10a.872B9 (locus 10a) 361.00 472.00 0.00

3 16G2 1444.00 12549.00 0.00

4 214K23.2 2522.00

]

}

Figure 6.1: Visualize Changes Assume a change is made in the transform table statement
(drop column). The figure shows the statements that need to be re-executed are surrounded
by red brackets. You can visualize changes by by placing the cursor over the point of change
and using the ’Show Statements That Would Be Affected by a Change” intention.

6.1.1 Instant refresh node

The Analysis node Instant refresh is a node that is automatically inserted in the current
model and is populated with all expressions/statements that have to be re-executed.

R Note that changes made manually in the Instant Refresh node are ignored and will be
deleted and replaced the next time IR is triggered.

6.2 IR Preferences

The preferences can be found in the Preferences/Settings MPS menu (MPS Preferences
Other Settings InstantRefresh on Mac, MPS Settings Other Settings InstantRefresh on

PC).
There are a few options that can be changed:

1. Type system check. If this option is enabled, instant refresh is not executed when the
type system reports errors for the current node.

2. Enabled. Toggle this option to activate or deactivate IR.
3. Debug mode. Toggles the visibility of additional messages in the IR tool. These mes-

sages are helpful for debugging purposes. They also give some additional information,
for instance explaining in some cases why IR was not executed (e.g. the feature is not
enabled, a pause expression is active..). Additionally it outputs the standard output of
the currently executing script that would normally be found in the Run tab console.

6.3 Tool 65

Figure 6.2: Instant Refresh Settings This dialog is available under MPS Prefer-
ences/Settings and controls the behavior of IR.

6.3 Tool

The IR tool is a tab that is located at the bottom left of the screen. It displays a message
when R code is generated and executed as well as the execution time of both of these phases.
If the debugging mode is activated, the output is way more verbose.

6.4 pause instant refresh

Although IR can be disabled in Preferences, there is sometimes a need to pause it only
for the current script. For instance, this is useful if you know that you need to add several
new statements to a script and do not want MetaR to attempt executing incomplete scripts.
RScript nodes have a built-in expression to achieve this. It can be activated by typing pause
instant refresh and using auto-complete anywhere in the script. When the pause
instant refresh expression is present in a script, IR will not attempt to execute this
script. You can resume instant refresh by deleting the expression.

R The pause instant refresh expression can only be used once per script because
it affects the whole script.

66 Instant refresh

test.R
.. pause instant refresh ..
a <- 1
Save Session

[b <- a + 1]
[d <- b / 2]
e <- 2

[cat(b)]

Figure 6.3: Sessions Affect the List of
Changed Nodes. A change was made in the
expression after the Save Session expres-
sion and therefore the statement above does
not have to be re-executed.

6.5 Sessions
To accelerate the re-execution of R code, sessions are used. Sessions are files with the
extension ".RDa" and are saved in a sub folder of the results directory.

They contain an external representation of R objects that can be used for restoring the
R environment. Every statement in an Analysis node automatically saves a new session
file after the execution of the statement. In RScript nodes save session expressions can be
inserted manually. They can only be inserted at the root level of the script and not inside
nested expressions (e.g. if statements, functions, blocks...). When a change is made, the
nearest saved session is loaded and changed expressions are only executed if they are located
after this expression. All sessions in the current model can be removed by using the use the
"Invalidate Sessions" intention () and new session files will be created on the next run of
IR.

Understanding Language Composition
The edgeR Statement
Example

7 — EdgeR

7.1 Understanding Language Composition

The EdgeR language (org.campagnelab.metaR.edgeR) has been developed as a illustra-
tion of language composition with MetaR. When you import the org.campagnelab.metaR
devkit into MPS, you are able to create analyses and the statements described in the previous
Chapter. If you tried to enter the edgeR alias, the error shown in Figure 7.1 would appear.
The reason is that by default, MetaR does not provide an EdgeR statement.

If you now also import the org.campagnelab.metaR.edgeR language (use + L

and import the edgeR language), you will be able to use the edgeR statement. A new EdgeR
statement is shown in Figure 7.2. Adding the EdgeR language to MetaR contributes a new
kind of Analysis statement, which becomes available through auto-completion. From a
user point of view, importing languages is all that is required to extend MetaR with new
language constructs. This new statement can be configured by the user and will generate
R code together with the other statements. This happens seamlessly and requires no other
configuration than declaring that the model uses another language.

Figure 7.1: Error When
Typing the EdgeR Alias.
The EdgeR statement is not
yet defined.

edgeR counts= <no table> model: ~ 0
comparing -> <no name> (normalize with common dispersion estimations)

Figure 7.2: New EdgeR Statement. A new EdgeR statement created after you have added
the org.campagnelab.metaR.edgeR language to the model’s MPS Used Languages.

68 EdgeR

7.2 The edgeR Statement
The edgeR statement performs tests of differential expression using read counts contained in
a table of data. The statement has the following attributes.

counts table
The table must contain columns annotated with the “counts” group. Bind this table reference
to a table that contains non-normalized read counts.

model
You can use the model attribute to enter a linear model. EdgeR will use this model to model
the mean and variance of the data. You can enter a linear model by typing + followed by the
name of a group usage attached to the counts table. Repeat to add multiple factors to the
model.

R EdgeR will use an exact test when the model has one factor. but will use a Generalized
Linear Model (GLM) when the model has more than one factor. This is handled
transparently.

comparing
The comparing attribute makes it possible to define the statistics that should be tested for
difference with zero. After you have defined a model with several factors (corresponding
to group usage), the factor levels (corresponding to group names) will be offered for auto-
completion. The factor level name stands for the average of the columns annotated with the
group. See Figure 7.3 for an example.

normalize with
EdgeR supports three types of normalization methods, which estimate variance/dispersion
in different ways:

• common dispersion
• trended dispersion
• tagwise dispersion
Place the cursor on the keyword following normalize with and use auto-completion

to switch from one type of normalization method to another. The the EdgeR Biocon-
ductor documentation http://www.bioconductor.org/packages/release/bioc/
html/edgeR.html for details about these approaches.

7.3 Example
Figure 7.3 presents an example where the edgeR statement is configured with a model (one
factor: LPS) to call differences between columns labeled with the groups LPS=YES and
LPS=NO.

http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html

7.3 Example 69

edgeR counts= filtered model: ~ 0 + LPS
comparing LPS=YES - LPS=NO -> Results (normalize with tagwise dispersion)

Figure 7.3: EdgeR Example.

Overview
The Limma Voom Statement
Example

8 — Limma Voom

R Limma Voom is a statement introduced in MetaR 1.3.

8.1 Overview

The Limma Voom statement makes it possible to use the Limma R package and the Limma
Voom adjustment to analyze RNA-Seq data with Limma. Similarly to EdgeR, the language
that provides the Limma Voom statement must be added to the model where you plan to
use the statement in analysis. The name of the language is org.campagnelab.metar.limma.
Note that this language depends on org.campagnelab.metar.models, which should also be
imported.

8.2 The Limma Voom Statement

The limma voom statement performs tests of differential expression using read counts
contained in a table of data. The statement has the following attributes. Figure 8.1 presents a
newly created Limma Voom statement.

limma voom counts= <no table> model: ~ 0
comparing -> stats: <no name> normalized: <no name>

Figure 8.1: New Limma Voom Statement.

counts table
The table must contain columns annotated with the “counts” group. Bind this table reference
to a table that contains non-normalized read counts.

72 Limma Voom

model
You can use the model attribute to enter a linear model. Limma Voom will use this model to
model the mean and variance of the data. You can enter a linear model by typing + followed
by the name of a group usage attached to the counts table. Repeat to add multiple factors to
the model.

comparing
The comparing attribute makes it possible to define the statistics that should be tested for
difference with zero. After you have defined a model with several factors (corresponding
to group usage), the factor levels (corresponding to group names) will be offered for auto-
completion. The factor level name stands for the average of the columns annotated with the
group. See Figure 8.2 for an example.

normalized
This attribute holds a table of normalized counts that will be produced when the limma
voom statement is executed. You should name the table of normalized counts to make it
possible to reference it later. Normalized counts are available even when the model has
a single factor (in which case adjust counts would not work because there is no batch to
remove).

adjusted counts
This attribute is exposed under the Inspector Tab(). It takes a boolean value: either
true or false. When true, the limma voom statement will produce a table of adjusted counts.
Data in this table is adjusted to remove the effect of covariates described in the model, but
not used in the comparing attribute. This is useful to remove the effect of batches, or other
cofactors expected to affect expression. Adjusted counts are implemented with the Limma
removeBatches function.

8.3 Example
Figure 8.2 presents an example where the Limma Voom statement configured with a model
(one factor: LPS) to call differences between columns labeled with the groups LPS=YES and
LPS=NO.

limma voom counts= filtered model: ~ 0 + LPS + covariate
comparing LPS=NO - LPS=YES -> stats: results normalized: normalized

Figure 8.2: Limma Voom Example. Since version 1.8, limma voom outputs normalized
counts.

Overview
Sleuth statement
Statistical Test

9 — Sleuth

9.1 Overview

Sleuth is a package for differential expression testing designed to be used with results
obtained with Kallisto [bray2016near]. In order to use Sleuth, you first need to map RNA-
Seq reads with Kallisto against a reference transcriptome. This task can be accomplished
with NextflowWorkbench [kurs2016nextflowworkbench] (we distribute a workflow to
perform pseudo-alignments with Kallisto and use this workflow in the NW training sessions).

When the workflow completes, you will be able to download Kallisto result directories.
In this Chapter, we assume that you download and organize Kallisto results under a single
directory we will refer to as KALLISTO_RESULTS.

9.2 Sleuth statement

The Sleuth statement, alias sleuth is provided in the org.campagnelab.metar.sleuth
language. Import this language in a model where you want to Sleuth for data analysis.

After downloading Kallisto results, create or open a MetaR analysis and type sleuth. A
new statement such as shown in Figure 9.1 will be created.

sleuth using enter a Kallisto result base directory ... model: ~ 0 -> Results

Figure 9.1: New Sleuth Statement.

The statement has three attributes:

Kallisto Result Base Directory
This is a string attribute where you can paste the path to KALLISTO_RESULTS. Once pasted,
if the directory contains Kallisto result sub-directories, the information is organized into a
MetaR Table, that will appear in the model. An import statement is added to the analysis and
the table becomes referenced by the sleuth statement. A sleuth statement bound to a table is

74 Sleuth

shown in Figure 9.2. At this point, you can annotate the table as you would for a Limma
voom or EdgeR analysis: add column groups to columns corresponding to samples and
annotate the groups with usages to define factors that you would like to include the analysis
(see Chapter 2 to learn how to do this). For instance, using the Kallisto results from the
Sleuth tutorial, the ColumnGroupContainer and Table would look as shown on Figure 9.3.

{
import table cuffdiff2_data_kallisto_results
sleuth using cuffdiff2_data_kallisto_results model: ~ 0 -> Results

}

Figure 9.2: Sleuth Statement Bound to a Table. The statement shown has been bound to a
table by entering a valid Kallisto results directory.

Column Groups and Usages

Define Usages:
Treatment

Define Groups:
HOXA1KD used for Treatment
Scramble used for Treatment
ID used for << ... >>

Table cuffdiff2_data_kallisto_results ...
File Path

/Users/fac2003/Downloads/cuffdiff2_data_kallisto_results/fake-table.tsv
Columns

transcriptId: string [ID]
SRR493366: numeric [Scramble]
SRR493367: numeric [Scramble]
SRR493368: numeric [Scramble]
SRR493369: numeric [HOXA1KD]
SRR493370: numeric [HOXA1KD]
SRR493371: numeric [HOXA1KD]

Figure 9.3: ColumnGroup and Table for Sleuth Tutorial Left: ColumnGroupContainer
configured for the Sleuth tutorial. Right: Table imported from Kallisto base directory, and
annotated with the Scramble and HOXA1KD groups.

Full Model
A model attribute can be specified after model:. This model should represent the full set of
factor/group usages you plan to use to model expression data. You need to annotate columns
of the table with groups and group usage before you can use auto-completion to define the
model.

9.3 Statistical Test
The attribute shown on the second line determines the type of statistical test to perform.
Sleuth supports two options at this time:

• Wald test
• Likelihood Ratio Test (LRT)
Place the cursor over the pink cell and use auto-completion to choose one of these

options.

9.3 Statistical Test 75

Likelihood Ratio Test
If you select the LRT, you get to enter a label and a second model. The label is a text string
that helps you remember what the alternate model represents. Note that Sleuth only supports
an alternate model that is fully contained in the full model. This means that you can remove
covariates from the alternate model, but not add some that are not present in the full model
(at this time, MetaR does not check for this condition, so watch out).

LRT, compare with: <no compareLabel> : ~

Wald Test
If you select Wald Test, you get the option of entering one group and one usage. The
combination should identify a condition for which you are seeking to find differentially
expressed transcripts. It is unclear what the test reports when there are several levels to a
factor (i.e., a group usage associated with three or more groups).

Wald Test for <no groupUsage> : <no columnGroupFactor>

Overview
The Biomart Statement
Examples

10 — Biomart

10.1 Overview
The BioMart project develops software and data services that are made available to the
international scientific community. Users of MetaR can access data marts provided by
BioMart, providing access to a wide range of research data . Similarly to EdgeR and Limma,
BioMart support is provided in a MetaR language extension. This means that in order
to access BioMart with MetaR, you first need to add the Biomart language to the model
where you create the analysis. To do so, you can press ctrl + L and add language org
.campagnelab.metar.biomart. After adding the biomart language to the model, you can
create query biomart statements, described in the following sections.

R The Biomart language in MetaR was developed by William ER Digan and was
introduced in MetaR 1.4.

10.2 The Biomart Statement
, The query biomart statement makes it possible to interactively specify which data should
be retrieved from a mart (using attributes and filters). Data downloaded from Biomart will
be stored in a new table. Figure 10.1 presents a newly created query biomart statement.
The query biomart statement has the following parameters.

• database This is the source database that will be queried to retrieve data.
• dataset This is the dataset, inside the database that will provide data.
• attributes These attributes describe which columns of data will be downloaded

and stored in the result table.
• filters These filters control which rows of data will be retrieved from the dataset.

database
The first time you create a query biomart statement in an Analysis, the statement will
retrieve the list of available Biomart databases. To use one of these databases, use auto-
completion over the database attribute (see text select a database in Figure 10.1). Then,

78 Biomart

query biomart database select a database and dataset select a dataset
get attributes<< ... >>
filters << ... >>
-> resultFromBioMart

Figure 10.1: New Query Biomart Statement.

press ctrl + and select one database. Selecting the database will retrieve the set of
datasets available in this database, which will become available with auto-completion.

dataset
Once a database is selected, you need to choose a dataset inside this database. To choose one,
press ctrl + to display all available datasets, on the text select a dataset. You may use
type keywords to identify the dataset of interest, similarly to other uses of auto-completion
in MPS and MetaR. When a dataset is selected, you will need to configure its children:

• attributes, which will be the columns retrieved from the dataset that will populate
the result table.

• filters, which make it possible to restrict the rows of data to retrieve.

R In a few instances, you may find that a dataset cannot be associated with attributes or
filters. In this case, in the auto completion menu for both attributes and filters will
display the message "No available filter or attributes in this dataset". The selected
dataset is no more available in Biomart. This means that this dataset, although
available via the Biomart web service, cannot be used to retrieve data from the web
service. You will need to select another database/dataset.

attributes
Attributes are columns of the source dataset that will be written to the result table. Figure 10.2
presents a new biomart attribute. An attribute has three parameters:

• attribute, a column you want to retrieve from the dataset and write to the result
table. Press ctrl + to display the available column names.

• type, the value type of the attribute. Choose a type for the column that will be created
from the set: boolean, numeric or string (note that string is the default). To
change the type, press ctrl + .

• column group, an attribute can have a group such as "ID". The user can display the
autocompletion menu by pressing ctrl + . Group must be defined in the Column
Group Container to be added to columns created for the result table.

R You must select at least one attribute before you can execute the query biomart
Statement.

filters
Filters make it possible to restrict the result with some criteria. The types of filter available
depend on the dataset selected in the statement. Figure 10.3 presents a new biomart filter.
There are four kinds of filters:

10.3 Examples 79

query biomart database ENSEMBL GENES 79 (SANGER UK)and dataset Mus musculus genes (GRCm38.p3)
get attributes<no attribute> of types string with column group annotation select a group
filters << ... >>
-> resultFromBioMart

Figure 10.2: Select an attribute in a biomart dataset. An attribute contains any informa-
tion you want to retrieve to populate the result table. Attributes have a name, a type and
a column group annotation. The set of available attributes depends on the specific dataset
selected.

• boolean filters select rows for which a value is either true or false. For example,
if a gene has or does not have a miRBase identifier.

• text filters select rows which match some text in some attribute. The query will
return only rows of the dataset that contain which match the text. For example, you
can use a text filter to query rows that include a specific GO term.

• list filters select rows that include an element among those of a finite list.
Available list elements are determined by the mart dataset. For example, a specific
chromosome in a specie can be selected with a list filter.

• id list filters select rows that contain a specific set of identifiers. These ids can
be obtained either in a MetaR SetOfIds node, defined before the query biomart
statement, or directly from an annotated table, where one column has an ID group.

query biomart database ENSEMBL GENES 79 (SANGER UK)and dataset Mus musculus genes (GRCm38.p3)
get attributesEnsembl Gene ID from featureof types string with column group annotation ID
filters no filter <no filterWith>
-> resultFromBioMart

Figure 10.3: New Biomart Filter. A filter allow you to filter rows of the dataset according
to some criterion. It exist four filters categories: boolean, text, list and id list. Filters are
related to a specific dataset.

table
The future table where your result will be stored. Column annotations derived from the
attribute type and column groups are displayed under the Inspector Tab ().

10.3 Examples
10.3.1 Example 1

Figure 10.4 shows how to obtain a table from the Ensembl database and Human dataset. The
result table "resultFromBiomart" contains two columns, the Ensembl Gene and Exon ID,
where the first column is annotated as a group "ID". These results are filtered to exclude any
gene that does not have a miRBase identifier.

10.3.2 Example 2
Figure 10.5 shows how to obtain a table from the Paramecium bibliography database. The
result table "resultFromBiomart" contains two columns, the PubMed ID and the abstract,

80 Biomart

query biomart database ENSEMBL GENES 79 (SANGER UK)and dataset Homo sapiens genes (GRCh38.p2)
get attributesEnsembl Gene ID from featureof types string with column group annotation ID

Ensembl Exon ID from featureof types string with column group annotation select a group
filters Ensembl Gene ID(s) [e.g. ENSG00000139618]from a set of idsidsset

with miRBase ID(s) where values are false
-> resultFromBioMart

Figure 10.4: Biomart Example 1.

where the publication year is equal or larger than 2000.

query biomart database PARAMECIUM BIBLIOGRAPHY (CNRS FRANCE)and dataset Paramecium bibliography
get attributesPubMed ID from my_attributesof types string with column group annotation ID

Abstract from my_attributesof types string with column group annotation select a group
filters Year >= match 2000
-> resultFromBioMart

Figure 10.5: Biomart Example 2.

Overview
Import Stubs Statement
Import Package Statement
Import Bioconductor Package State-
ment
Stubs
Eval Statement
Eval Expression
Accessing MetaR Columns within R
Expressions
Example

11 — R Functions

11.1 Overview

Since version 1.4, MetaR supports calling R functions directly. This Chapter describes how
you can use this feature to take advantage of the many functions available in R packages to
transform data in your MetaR Analyses.

11.1.1 Function w

Function stubs are provided that represent functions offered by different packages. Stubs
do not provide the code associated with the function, but describe the function name and
the arguments of the function and its default values. This information is used to support
auto-completion for R functions.

We provide pre-imported stubs for the packages used during the MetaR training sessions,
namely: base, graphics, data.table, pheatmap, biomaRt, edgeR and limma. While stubs are
provided, they are not immediately available in a MetaR analysis. In order to use R function
stubs, you need to

• Add org.campagnelab.R to the list of Used languages in the model where you need
the stubs.

• Use the import stubs statement followed with the name of the package that pro-
vides the functions that you wish to use.

For instance, if you enter the following statement:

import stubs base

After typing this statement, the base package R functions will become available inside the
Analysis where you imported these stubs. You can use R function using the eval statement
or expression (see Sections 11.6and 11.7).

If you need a package that is not yet provided with MetaR, you should use the import
package statement (see Section 11.3).

82 R Functions

11.2 Import Stubs Statement

The import stubs statement (alias import stubs) makes it possible to import functions in
packaged already packaged with MetaR. Simply type import stubs, and use auto-completion
to locate the package for which you need to import function stubs.

11.3 Import Package Statement

The import package statement (alias import package) makes it possible to import func-
tions in any R package. If the package is already provided in MetaR, the import package
statement will be automatically replaced with the equivalent import stubs statement (see
Section 11.2). Figure 11.1 presents an import package statement.

name
The name attribute is a string and must be the name of an R package, suitable to install the
package in R with install.packages("name").

import package <no name>

Figure 11.1: New Import Package Statement. Enter the name of an R package to import
this package into the Analysis. Note that the package will be visible only after you run the
Analysis at least once.

R If you need to import a Bioconductor package, use the import bioconductor
package statement instead.

After you execute the Analysis that contains the import package statement, the package will
be installed in the version of R that you are using, if needed and the package loaded. Use
the “Reload Functions and Create Stubs” intention after you have executed the statement to
create the Stubs root node for the functions in the package. When you call this intention, the
package will be inspected for function declarations, and these declarations will be written
to a Stubs root node in the model where the Analysis is located. Following this process,
the import package statement is replaced with the import stubs statement, loading the
stubs directly from the model. Note that you can inspect the stubs object to learn about the
functions available in the package represented by the stubs.

11.4 Import Bioconductor Package Statement

Importing a bioconductor package is very similar to importing a regular R package, but
you need to use the import bioconductor package statement. This statement ensure
appropriate installation and loading of bioconductor packages in R. Figure 11.2 presents a
new import bioconductor package statement.

11.5 Stubs 83

import bioconductor package <no name>

Figure 11.2: New Bioconductor Import Package Statement. Enter the name of an Bio-
conductor package to import this package into the Analysis. Note that the package will be
visible only after you run the Analysis at least once.

11.5 Stubs

Stubs represent functions from R regular or bioconductor packages. We do not recommend
creating Stubs manually. The easiest way to create Stub root nodes is by using the import
package and import bioconductor package statements. Figure 11.3 presents a snap-
shot showing a few functions located in the base Stubs root node (R version 3.1.3).

R Stubs distributed with MetaR are packaged in models named after the version of R
which provided the package, in an effort to help track differences between major R
versions.

Figure 11.3: Base Package Stubs Illustration. This snapshot presents the beginning of the
stubs base root node, located in model R3_1_3 (language org.campagnelab.metar.r.stubs).

11.6 Eval Statement

The eval statement can be used to call R functions that produce some side-effect. When you
import the devkit org.campagnelab.R into a model, you can type eval in an Analysis node
as a statement. The statement will offer auto-completion for function names imported into
the analysis. If you do not see the function that you would like to use, make sure you have
imported the stubs for the package that contains this function. When you run the analysis,
the function named after eval will be executed. Note that you cannot retrieve a return value
with the eval statement. You must use the eval expression to obtain a value. The eval
statement is useful when you need to call a function that has a side-effect, for instance the
setkey function of data.table.

11.7 Eval Expression

The eval expression can be used to call R functions inside a MetaR expression. MetaR ex-
pressions are used in the subset statement, and in some plotting statements (e.g., boxplot
or histogram). When you import the devkit org.campagnelab.R into a model, you can type

84 R Functions

eval inside an expression. The eval expression will offer auto-completion for function
names imported into the analysis. If you do not see the function that you would like to use,
make sure you have imported the stubs for the package that contains this function.

11.8 Accessing MetaR Columns within R Expressions
When you use either the eval statement or expression, you will often need to access columns
from a MetaR table to pass as arguments to the function. You can do this with the $ node,
which bridges between R expressions (used inside R functions) and MetaR columns. After
typing $, the node will auto-complete to the set of columns visible at this point of the MetaR
Analysis.

11.9 Example
Figure 11.4 presents an example where stubs are imported for packages pre-packaged with
MetaR and the import package statement is used to import grDevices.

Analysis Testing functions
{

import stubs base
import stubs data.table
import stubs graphics
import package grDevices
simulate dataset with [

num of samples: 3
num of genes: 500
mean when all factors are false: 1
discrete factors: treatment
effect size: 1
continuous covariate: temperature , range: [0 - 100] , slope: 1

] -> simulate
eval boxplot(x = ${sample_1_treatmen t})
eval boxplot(x = c(1, 2, 3, 4))

}

Figure 11.4: Functions Example. This example imports stubs and one package, creates a ta-
ble with three columns (see Simulate statement in Chapter 13) and evaluates two R functions.
The first use of the boxplot function plots the values of the column sample_1_treatment
that was generated with the simulate statement. The second call to boxplot is given a list
of four integers.

Narrow

The Seurat language
The Seurat object
Loading Seurat objects
QC and Clean Up
Adjusting Seurat objects
Plotting Seurat objects
Adding information to Seurat objects
Aligning Seurat objects
Limma for Seurat objects
Other Seurat statements

12 — Seurat

12.1 The Seurat language
Since release 2.3.0, MetaR offers support for Single Cell RNA-Seq analysis with the
Seurat 2.0 R package [butler2017integrated]. This functionality is implemented in the
org.campagnelab.metar.seurat language .

The org.campagnelab.metar.seurat (Seurat) language consists of statements that help
with the analysis of single cell RNA sequencing data (scRNA-seq data). These statements
cover a wide range of functionality: loading scRNA-seq data, quality control/cleanup steps,
adjusting data (by normalization or scaling), plotting it, computing extra information based
on the data (principal components, markers, etc.), aligning data from multiple samples,
performing limma analysis on it and other functionality.

Seurat statements can be typed in an Analysis script (see Chapter 3). The simplest way
to see what Seurat statements are valid at a given context in an analysis, is to look at the
suggestions offered by the context assistant. Figure 12.1 and Figure 12.2 show two examples
of context assistants. To activate the context assistant, just press in the script to generate
an empty line. Placing the cursor on the empty line should bring up the context assistant.

R If you do not see the context assistant, try pressing the space bar with the cursor
positioned on an empty line. Moreover, to see all possible statements, you can use
auto-completion like for all other statements in an analysis (see Chapter 3).

To start writing analyses using Seurat, you need to import devkit org.campagne
lab.metaR and language org.campagnelab.metar.seurat. The following sections

Figure 12.1: Context assistant at beginning
of script. At the beginning of the script, the
context assistant suggests loading a Seurat ob-
ject either directly from the output of the 10X,
or from an expression table.

86 Seurat

Figure 12.2: Context assistant after loading one Seurat object. Once we have Seurat
objects available in the script, more Seurat statements become valid.

Figure 12.3: Properties view of a newly cre-
ated Seurat object. Many of the properties of
this Seurat object are not yet computed. These
properties are created automatically at the cre-
ation of the object.

describe the kinds of statements offered by the MetaR org.campagnelab.metar.seurat
language.

12.2 The Seurat object

A Seurat object is a structure that stores scRNA-seq data and associated information. Many
of the Seurat statements result in the creation of a new Seurat object. Seurat objects and
references to these objects are represented with a purple foreground. Moreover, you can
study the associated information of a Seurat object in the inspector window, when clicking on
any such object or a reference to it. Figure 12.3 shows the information (properties) associated
with a newly created Seurat object. These properties are used by some statements to assess
whether the input Seurat object is ready for the computations required by the statement.

12.3 Loading Seurat objects

There are two statements in the Seurat language for loading a Seurat object, one directly
from the files produced by 10X, and one from an expression matrix.

12.3.1 Load 10X dataset
The load 10X dataset statement makes it possible to load a Seurat object directly from
the output files of 10X Genomics. The Seurat object and its properties become available to
the statements that follow the loading (until the line where it is deleted; see Section 12.10).

12.3 Loading Seurat objects 87

You can create this statement by clicking Load Load scRNA-seq data from 10X output

in the context assistant, or by typing the alias load 10X dataset on an empty line of
Analysis (see Figure 12.4) for a new load 10X dataset statement).

Figure 12.4: New load 10X dataset statement. Use this statement to load a Seurat object
from the output of 10X Genomics.

When creating a new load 10X dataset statement, the by rejecting cell when
strategy and by rejecting gene when come prefilled by default with certain upper
thresholds, but these strategies can be changed.

input directory

This field of load 10X dataset should point to the directory produced by 10X Genomics
cell ranger count output. Cellranger produces a directory structure which contains the
following three files: “barcodes.tsv”, “genes.tsv” and “matrix.mtx”. Unless the directory
you specify exists on the disk and it contains these three files, the input directory field will be
shown on a red background. Notice that this field has a button to let you select the directory.

annotations

The annotations are references to group usages (see Section 2.5). They allow you to attach
more information to the data loaded from 10X Genomics. For instance, if you load data
that corresponds to a certain patient and a certain state of the sample (condition), you would
annotate the Seurat object with a reference to a group usage that represents the patient
and with a reference to a group usage that represents the state (see Figure 12.5). These
annotations are used by the expression tables generated from the Seurat object in the limma
statements (see Section 12.9). Note that you need to create groups and group usages in
a Column Group Container root node in the model of your solution. If a Column Group
Container does not exist in the model, see Section 2.3 to learn how to create one.

cleanup strategies

There are three possible strategies available when loading data from 10X Genomics: rejecting
a cell whose number of genes is lower or higher than a threshold, rejecting a gene when the
number of cells it appears in is greater or smaller than a threshold, and normalizing the data
at loading time. The cleanup strategies are explained in Section 12.4.

output

The output of the load 10X dataset statement is a Seurat object. You need to set the
name of this object.

88 Seurat

Example
Figure 12.5 presents an example of a load 10X dataset statement.

Figure 12.5: Example of load 10X dataset statement. In this example, we load data for
a patient denoted “Patient1", from a sample of collapsed tubules tissue. As a result, we
annotate this Seurat object with “Patient1" and “Collapsed". Furthermore, we reject the cells
with less than 1000 genes expressed in them, and the genes that can only be found in less
than 3 cells. Finally, we normalize the data using a scale factor of 10,000.

12.3.2 Load dataset from table

The load dataset from statement makes it possible to load a Seurat object from a
table that contains expression data. You can create this statement by clicking Load

Load scRNA-seq data from table in the context assistant, or by typing the alias load
dataset from table on an empty line of Analysis. This statement is identical in fields
and behavior to the load 10X dataset statement, except for the place of input (one
is a directory generated by 10X Genomics, and one is a table). Thus, we refer you to
Subsection 12.3.1 for further details on the common fields.

input table
The input table should have genes on the rows and cells on the columns. Moreover, the table
should have the row names. To reference a table from this statement, you need to have a
table available in the model (either by importing it, or by obtaining it from other statements;
see Section 2).

Example
Figure 12.6 presents an example of a load data from table statement.

12.4 QC and Clean Up

One important step in the analysis of scRNA-seq data is quality control on the data. In Seurat,
you can do that with the cleanup seurat statement. Usually, this quality control step is
done after observing some diagnostic plots on the data (see Section 12.6.1 for diagnostic
plots).

You can create this statement by clicking Cleanup in the context assistant, or by
typing the alias cleanup seurat on an empty line of Analysis (see Figure 12.7 for a new
cleanup seurat statement). Note that in the context assistant, you always need to specify
a strategy that is going to be instantiated in the cleanup seurat statement.

12.4 QC and Clean Up 89

Figure 12.6: Example of load data from table statement. In this example, we load data
from a table with simulated data for a patient denoted “Patient1", and from a sample of
collapsed tubules tissue. As a result, we annotate the Seurat object with “Patient1" and
“Collapsed". Furthermore, we reject the cells with less than 1500 genes expressed in them,
and the genes that can only be found in less than 4 cells. We do not normalize the data at
loading time.

cleanup seurat introduce referenced seurat

-> seurat: filtered

Figure 12.7: New cleanup seurat statement. Use this statement to perform quality control
on a Seurat object.

input Seurat
You need to specify the Seurat object on which quality control is done. Only Seurat objects
that are defined in previous statements are visible in the current cleanup statement, due to
scoping rules.

output Seurat
The statement creates a new Seurat object that represents the input Seurat object with the
modifications prescribed in the cleanup statement. The cleanup seurat statement creates
a default name for the output Seurat object, but this name can be modified.

strategies
To introduce a strategy, you have to press ctrl + in the red space on the second line of
the statement. All the available strategies will subsequently appear in the menu. In the next
sections, we explain these strategies. Two of these strategies are only available in the initial
cleanup section of the loading statements: the reject gene strategy and the normalization
strategy.

12.4.1 Reject gene strategy

The by rejecting gene when strategy specifies a comparison operation where the
number of cells where gene is expressed in is compared to a threshold. This
strategy filters the input Seurat object by dropping the genes for which the comparison is
true. For this strategy, the left-hand side of the comparison can be only number of cells
where gene is expressed in.

90 Seurat

12.4.2 Reject cell strategy

Another strategy is when you reject cells based on whether certain conditions are fulfilled.
Pressing ctrl + on the left-hand side of a condition in this strategy gives you three possi-
bilities: number of UMIs (unique molecular identifiers), number of genes and percentage
of mitochondrial genes in cell. This strategy filters the input Seurat object by dropping the
cells for which any of the comparisons is true. You can specify multiple conditions in this
strategy (see Figure 12.8 for an example). Note that the threshold for mitochondrial genes is
an integer number representing the percentage.

12.4.3 Regress out strategy

Because single cell datasets often contain technical noise, batch effects, or even undesired
biological sources of variation, the cleanup statement offers a strategy to regress out these
sources of variation. You can write a list of such sources to be regressed out; after introducing
one element inside the square brackets of the regress out strategy, just press to introduce
a new element (see Figure 12.8 for an example). Note that this strategy also scales the data
after regressing out the variation, so it is adviced that it is the last strategy in the cleanup
statement. As a result, we obtain scaled data after the cleanup.

12.4.4 Accept highly variable genes strategy

It is common that you focus on the highly variable genes for downstream analysis; for this
end, you can use the by accepting highly variable genes when strategy. This
will mark the highly variable genes in the Seurat object. The highly variable genes are used
by further Seurat statements. To compute the highly variable genes, Seurat makes use of the
average expression and dispersion of each gene. The strategy allows you to set the cutoff
for the average expression and dispersion axis. The cutoff can be typed inside the square
brackets of the strategy. To introduce a new cutoff, just type after the last one introduced,
and press ctrl + to see the available choices (see Figure 12.8 for an example). Note
that once you specify this strategy in the cleanup statement, an output plot is pops up, that
represents the dispersion versus average expression plot. You need to provide a name for
this plot.

12.4.5 Normalization strategy

Another strategy that can be used only in the cleanup section of the loading statements is the
normalization strategy. This strategy normalizes the data using the scale factor provided in
the strategy and log-transforms the result. There is also a separate statement for normalization
(see Subsection 12.5.1).

Example

Figure 12.8 presents an example of a cleanup seurat statement.

12.5 Adjusting Seurat objects 91

Figure 12.8: Example of cleanup seurat statement. This illustrates almost all the features
of the cleanup statement. We set a cutoff for all the axes, we reject cells based on three
different conditions and we regress out unwanted variations for two different variables.

12.5 Adjusting Seurat objects

There are two statements in Seurat that are meant for standard adjusting (pre-processing)
the data: normalization and scaling. Some statements require that the Seurat object is
already normalized or scaled. For instance, the calculation of highly variable genes needs a
normalized Seurat object as input.

12.5.1 Normalize Seurat object

The normalization statement normalizes the expression data stored in the Seurat object and
log-transforms the result. You can create this statement by clicking Adjust Normalize

in the context assistant, or by typing the alias normalize seurat on an empty line of
Analysis (see Figure 12.9 for an example of a new normalize seurat statement).

normalize seurat introduce referenced seurat with scale factor <no scaleFactor> -> seurat: introduce name

Figure 12.9: New normalize seurat statement. A new normalize seurat statement
with three fields to be completed.

input Seurat
The input Seurat object can be any Seurat object created in a previous statement, but it should
not be an already normalized Seurat object. You will receive an error if that is the case.

scale factor
You also need to specify the scaling factor for the normalization.

output Seurat
The output is a normalized Seurat object. You need to introduce a name for it.

12.5.2 Scale Seurat object

The scaling statement scales the data stored in the Seurat object. You can create this statement
by clicking Adjust Scale in the context assistant, or by typing the alias scale seurat
on an empty line of Analysis (see Figure 12.10 for an example of a new scale seurat
statement).

92 Seurat

scale seurat introduce referenced seurat -> seurat: introduce name

Figure 12.10: New scale seurat statement. A new scale seurat statement with two
fields to be completed.

input Seurat
The input Seurat object can be any Seurat object created in a previous statement. Press ctrl +

to see the available choices.

output Seurat
The output is a scaled Seurat object. You need to introduce a name for it.

12.6 Plotting Seurat objects

While there are statements in Seurat that create plots as an auxiliary artifact, there are also
dedicated statements to create plots. These plots are usually used to interactively explore the
data and decide on parameters for the next statements in the analysis.

12.6.1 Diagnostic plots
One important statement, that is usually used directly after loading a Seurat object, is
the Diagnostic plots statement. You can create this statement by clicking Plots

Diagnostic plots in the context assistant, or by typing the alias Diagnostic plots on
an empty line of Analysis (see Figure 12.11 for an example of a new Diagnostic plots
statement).

Diagnostic plots
width: 300
height: 300

for introduce referenced seurat -> number of genes detected per cell - violin plot: violinNGene
number of UMIs per cell - violin plot: violinNUMI
percentage of mithocondrial genes per cell - violin plot: violinMito
nGene and nUMI - scatter plot: scatterNUMINGene
nUMI and percent.mito - scatter plot: scatterNUMIMito

Figure 12.11: New Diagnostic Plots statement

input Seurat
You need to specify the name of the input Seurat object. Press ctrl + to see the available
Seurat objects.

width and height
You can also specify the width and height of the five plots, all at once, by modifying these
two parameters.

output plots
There are five output plots from this statement. Three of them are violin plots for the number
of genes in the cell (nGene), number of unique molecular identifier in the cell (nUMI) and
the percentage of mitochondrial genes in the cell (percent.mito). The other two are scatter

12.6 Plotting Seurat objects 93

plots showing percent.mito versus nUMI, and nGene versus nUMI. These five plots have
default names, but you can change these names by clicking on the name and typing. To
visualize these plots, you can use the multiplot statement (see Subsection 3.9.7).

These five plots are typically used to decide on thresholds for the rejection of cells or
other parameters of the cleanup statement.

12.6.2 Features plot
The features plot highlights the specified features on a plot with tSNE clusters. This
statement is useful in exploring markers for the clusters. You can create this statement by
clicking Plots Features plot in the context assistant, or by typing the alias Feature plot
on an empty line of Analysis (see Figure 12.12 for an example of a new Feature plot
statement).

Figure 12.12: New feature plot statement. A new Feature plot statement expects a list
of features, an input Seurat object and a name for the output Seurat object.

input Seurat
The input Seurat object that has the tSNE computed already. If this is not the case, an error
will be reported.

features
You need to specify a list of features that will be highlighted in the clusters. The output plot
is actually a collection of smaller plots, one per feature; each smaller plot highlights one
feature in the clusters. To enter feature names, press inside the square brackets of the
statement, and type in a name. To introduce another feature in the list, press at the end
of a feature.

output plot
You need to introduce the name of the output plot.

12.6.3 Features and total plot
The features and total plot highlights the specified features and their cumulated effect
(obtained by multiplying the expressions of these genes) on a plot with tSNE clusters. This
statement is useful to see whether the specified features characterize a cluster together. You
can create this statement by clicking Plots Features and total plot in the context assistant,
or by typing the alias Feature plot and total on an empty line of Analysis (see
Figure 12.13 for an example of a new Feature plot and total statement). The output
plot for such a statement where features “PLEK" and “SDPR" are given as input, can be
seen in Figure 12.14.

The parameters for this statement are identical to the parameters for the Feature plot
statement.

94 Seurat

Figure 12.13: New feature plot and total statement. A new Feature plot and total
statement expects a list of features, an input Seurat object and a name for the output Seurat
object.

multiplot -> multiPlot2Features [1 cols x 1 rows] Hide preview

[twoFeaturesPlot]

Figure 12.14: Two features
and their cumulated expres-
sion highlighted. This figure
shows plots for two features
(genes), and their cumulated
expression (Total).

12.7 Adding information to Seurat objects 95

12.7 Adding information to Seurat objects

Another important step in the analysis of scRNA-seq data is the computation of principal
components, of tSNE clusters and of the markers per cluster. There are three dedicated
statements in Seurat, for the three functionalities.

12.7.1 Add principal component information

The add principal components statement computes the principal components for the
expression data in the input Seurat object. You can create this statement by clicking Add

Principal component info in the context assistant, or by typing the alias add principal
components on an empty line of Analysis (see Figure 12.15 for an example of a new add
principal component statement).

add principal components for introduce referenced seurat -> seurat: addInfo
standard deviation of PCs plot : <no name>

Figure 12.15: New add principal components statement. A new add principal
components statement expects an input Seurat object, a name for the output Seurat object
and a name for the auxiliary plot produced.

input Seurat

The input Seurat object for which principal component analysis is added.

output Seurat

The output Seurat object will have the principal component analysis property set to true.
You can change the name of this object.

plot

This statement produces a plot as an auxiliary artifact. The plot shows the standard deviations
of the principal components. This plot helps you decide which PCs to use further in the
analysis, by choosing the cutoff where there is an elbow in the plot. For an example, see
Figure 12.16.

12.7.2 Add clusters information

The add clusters statement computes the tSNE clusters for the expression data in the
input Seurat object. This statement needs PC information, so it needs to be run after the
add principal components statement. You can create this statement by clicking Add

Clusters info in the context assistant, or by typing the alias add clusters on an empty
line of Analysis (see Figure 12.17 for an example of a new add clusters statement).

input Seurat

The input Seurat object for which tSNE clusters information is added.

96 Seurat

multiplot -> standardDev [1 cols x 1 rows] Hide preview

[sdPlot]

Figure 12.16: The standard
deviations of principal com-
ponents plot. Given this fig-
ure, we would choose 17 as
the cutoff value, because it re-
sides at the elbow of the plot.

Figure 12.17: New add clusters statement. A new add clusters statement produces an
auxiliary plot showing the tSNE clusters and uses information from the principal components
analysis via the parameters captured in range of PC.

range of PCs
Based on the cutoff you see in the plot produced by the principal component analysis
statement, you fill in the range of PCs to use in the tSNE analysis.

resolution
This parameter affects the number of clusters the tSNE analysis will produce (the larger the
resolution, the more clusters it produces). A typical value for this parameter is 0.6.

output Seurat
The output Seurat object will have the tSNE property set to true.

plot
This statement also produces a plot that shows the tSNE clusters.

12.7.3 Add markers information

Once clusters of cells have been identified, you might want to find genes whose expression
is specific of the cluster. Seurat calls these genes cluster markers. The add markers
statement computes the markers for each cluster, so it needs to be run on an input Seurat
object that has tSNE clustering information. You can create this statement by clicking Add

Markers per cluster info in the context assistant, or by typing the alias add markers on an
empty line of Analysis (see Figure 12.18 for an example of a new add markers statement).

input Seurat
The input Seurat object for which markers information is added.

12.8 Aligning Seurat objects 97

Figure 12.18: New add markers statement. A new add markers statement produces an
auxiliary table with the identified markers, for each cluster.

output Seurat
The output Seurat object that will have the markers information.

number of markers
This parameters allows you to specify how many markers per cluster you want to compute.

xFold
This parameter specifies the minimum log-fold difference between the two compared groups
of cells when computing the markers.

percentage
This parameter specifies what is the minimum percentage of cells in either of the two groups
of cells, where genes need to be detected when computing the markers.

table
This statement also produces a table that contains the markers per cluster. You can see the
columns of the table by clicking on it and looking in the tab.

12.8 Aligning Seurat objects

One common scenario in the scRNA-seq data analysis, is the comparison of different samples.
Before doing comparisons between these different samples, it is important to align them. To
this end, Seurat 2.0+ provides an approach to align cells found in two Seurat objects. MetaR
wraps this functionality in the following analysis statements.

12.8.1 Prealign Seurat objects

The pre-align statement prepares the Seurat objects for alignment and it outputs a plot that is
used to decide on parameters for the alignment statement. You can create this statement by
clicking Align Prealign in the context assistant, or by typing the alias prealign seurats
on an empty line of Analysis (see Figure 12.19 for an example of a new prealign seurats
statement).

input seurats
This statement expects two input Seurat objects that will be aligned by this statement.

98 Seurat

prealign seurats introduce referenced seurat and introduce referenced seurat
heatmaps - from dimension: <no dim1>
heatmaps - to dimension: <no dim2>

-> seurat: introduce name
CCA plot (CC1 versus CC2): preCCA
heatmaps for given dimensios: heatmapDims

Figure 12.19: New prealign statement. The prealign seurats statement outputs a plot
showing the state of the first two canonical correlation vectors (used under the hood), and
also heatmaps for as many of these vectors as you specify in the input parameter.

heatmaps for canonical correlation vectors up to
The canonical correlation (CC) vectors specified in the range of this statement are shown
in heatmaps so that you can assess what CCs to use further in the analysis, in particular,
for the alignment. You can decide to choose up to the latest CC that shows some variation.
Figure 12.20 shows an example.

multiplot -> heamaps [1 cols x 1 rows] Hide preview

[heatmapDims]

Figure 12.20: Heatmaps showing the CC vectors and their scores per gene. For this
particular example, we choose CCs up to 13, because this is where the signal starts to fade.

output Seurat
The Seurat object that is going to contain the aligned result.

CCA plot
This plot shows information from the first two CC vectors so that you can assess whether the
alignment can be made.

12.9 Limma for Seurat objects 99

heatmaps plot
This plot contains the heatmaps for the CC vectors specified at the input. These heatmaps
can be used to decide what CCs to use further down in the analysis.

12.8.2 Align Seurat object
The align seurat statement aligns the two Seurat objects provided in the pre-alignment.
You can create this statement by clicking Align Align in the context assistant, or by typing
the alias align seurat on an empty line of Analysis (see Figure 12.21 for an example of
a new align seurat statement).

align seurat introduce referenced seurat
cca from dimension: <no dim1>
cca to dimension: <no dim2>

-> seurat: introduce name
tsne clusters with datasets: tsneClustersDatasets
tsne clusters: tsneClusters

Figure 12.21: New align statement. A new align statement needs information obtained
from the prealign statement and outputs two auxiliary tSNE plots.

input Seurat
The input Seurat should be the Seurat object obtained from the prealign seurats state-
ment.

CCA dimensions from - to
In these parameters, you specify the CCs that you have chosen as a result of inspecting the
heatmaps from the prealign seurats statement.

output Seurat
The output Seurat contains aligned data from the two Seurat objects given as input to the
prealign statement.

tSNE plots
This statement generates two plots with the tSNE clusters, one where the two datasets from
the two input Seurat objects are highlighted, and one where the clusters themselves are
highlighted.

12.9 Limma for Seurat objects

In Seurat, there are special statements used for the differential expression analysis using the
limma package.

12.9.1 Pre-limma Seurat object
The pre-limma statement extracts an aggregated count table from the Seurat object given
as input. This is needed to obtain counts for genes in individual clusters. The procedure
simply sums the counts of a gene across cells of a cluster, while preserving experimental
conditions. To this end, we aggregate columns per individual Seurat object (we kept track

100 Seurat

of Seurat objects that were merged, or aligned)and per tSNE cluster. You can create this
statement by clicking Limma Prelimma in the context assistant, or by typing the alias pre
limma on an empty line of Analysis (see Figure 12.22 for an example of a new pre limma
statement).

pre limma
from tsne cluster: <no clustersFrom>
to tsne cluster: <no clustersTo>

for introduce referenced seurat -> aggregate counts with names table : aggregateCountsWithNames

Figure 12.22: New pre limma statement. The pre limma statement generates an aggre-
gated count table and needs tSNE cluster information as input.

input Seurat
The input is a Seurat object for which we want to compute the differentially expressed genes.

tSNE clusters from - to
These parameters need to be filled in with the clusters that result from the tSNE computation.

output table
The aggregated count table contains one column per input Seurat object and per cluster. For
instance, if we merged P1C and P1D into P1, P2C and P2D into P2, we aligned P1 and P2
into P1P2, and we have obtained clusters 0 and 1, then we get columns P1C0, P1C1, P1D0,
etc. Besides these columns, the output table contains a column with gene names and has
also row names.

The annotations that were introduced when loading the Seurat objects will be propagated
to the output table.

12.9.2 Limma voom
The limma statement computes the differentially expressed genes for the input count table
and outputs a table with results per contrast. You can create this statement by clicking
Limma Limma in the context assistant, or by typing the alias limma voom on an empty
line of Analysis (see Figure 12.23 for an example of a new limma voom statement).

limma voom
model formula ~ 0
comparisons:

for <no table> -> << ... >>

Figure 12.23: New limma statement. A limma statement applied on a table containing
expression data.

input table
The input table should be a table containing expression data. Moreover, the table needs to be
annotated with some group usages that will subsequently be used in the model formula and

12.10 Other Seurat statements 101

in contrasts.

output tables
For each contrast specified in this statement, there will be one output results table containing
information such as the log-fold change and adjusted P-value. Moreover, each of the output
tables comes with a path to a directory where an interactive web plot is generated.

For the explanation of the other parameters of the limma statement, look at the parameters
described in the main limma statement provided by MetaR in Chapter 8. The only difference
is that in the Seurat statement, one can specify multiple contrasts (under the comparisons
attribute).

12.10 Other Seurat statements
There are two more Seurat statements that are useful at various places in the analysis: the
merge and the delete statements.

12.10.1 Merge Seurat objects
The merge statement takes two Seurat objects as input and creates one single output Seurat
object as output. Under the hood, this statement merges the genes in the two Seurat objects
and keeps all the cells from the two objects. You can create this statement by clicking Merge

in the context assistant, or by typing the alias merge seurat object on an empty line of
Analysis (see Figure 12.24 for an example of a new merge seurat objects statement).

merge seurat objects introduce referenced seurat introduce referenced seurat -> seurat: mergedSeurat

Figure 12.24: New merge seurat objects statement. A merge statement needs two input
Seurat objects and returns them merged in the output Seurat object.

input Seurat objects
You need to provide two input Seurat objects.

output Seurat object
The output Seurat objects contains all the information from both input Seurat objects.

12.10.2 Delete Seurat object
This statement deletes the provided Seurat object. After this statement, the input Seurat
object is not available as input anymore. This statement was introduced to save memory.
You can create this statement by clicking Delete in the context assistant, or by typing the
alias delete seurat on an empty line of Analysis (see Figure 12.25 for an example of a
new delete statement).

input Seurat
You need to introduce the Seurat object that needs to be deleted.

102 Seurat

delete seurat introduce referenced seurat Figure 12.25: New delete
statement. A delete statement
needs only the Seurat object to
be deleted as input.

Why simulating datasets
The Simulate Dataset Statement
Example

13 — Simulating Datasets

13.1 Why simulating datasets

Simulated datasets are useful to check that analyses work as expected. MetaR provides a
Simulate Dataset command that allows to simulate datasets starting from a few assump-
tions and parameter values. This approach could be also beneficial at experimental design
time to validate certain assumptions before running (expensive) experiments.

In order to use the command inside an Analysis script, the simulation language (org
.campagnelab.metaR.simulation) has to be imported in the current model (use +

L and select the language from the list). Figure 13.1 shows a new simulate dataset
statement.

simulate dataset with [
num of samples: #sample
num of genes: #genes
mean when all factors are false: <no mean>
discrete factors: factor name
effect size: effect of dicrete factors
continuous covariate: factor name , range: [lower limit - upper limit] , slope: <no linear_slope>

] -> simulate

Figure 13.1: New Simulate Dataset Statement. A new simulate dataset statement
created after you have added the org.campagnelab.metaR.simulation language to
the model’s MPS Used Languages.

13.2 The Simulate Dataset Statement

The simulate dataset statement is configurable and lets you create datasets that reflect
different simulation scenarios. The output dataset is represented by a Table node that can
be then further manipulated with other MetaR statements.

num of samples
The number of samples included in the dataset. Each sample is named according to the
results of the simulation. If the simulation decides that the sample name sample_3 has been

104 Simulating Datasets

treated with a discrete factor named LPS, it is renamed to sample_3_LPS to make it easy to
identify the simulated treatment.

num of genes
The number of genes included in the dataset. Each gene is renamed according to the results
of the simulation. If the simulation decides that the gene named gene_2 is affected by a
discrete factor named LPS, it is renamed to gene_2_LPS to make it easy to identify the
simulated treatment.

mean
The value of the mean expression level for each gene, assuming no treatment.

discrete factors
List of treatments used in the simulation. About 50% of the samples will be considered
treated with each factor specified here. About 30% of the genes will be considered affected
by each factor.

effect of discrete factors
The impact of each discrete factor on the data generated by the simulation

continuous covariate
A covariate that will affect the value of the gene expression level. You can define the age of
the covariate, its range and the slope. A value is added to the expression value of each gene
equal to the product of the slope and the cofactor value. Cofactors are set for each sample
using a uniform distribution. For instance, if you indicate an ’age’ continous covariate
between 0 and 36, each sample will be assigned an age in this range, and the value added to
the expression level of the gene will be determine for each sample by multiplying the age of
the sample by the slope of the ’age’ cofactor.

13.3 Example

simulate dataset with [
num of samples: 10
num of genes: 20
mean when all factors are false: 5
discrete factors: LPS
effect size: 100
continuous covariate: age , range: [0 - 36] , slope: 10

] -> simulate

Figure 13.2: Simulate Dataset Example. This statement will create a dataset with a single
discrete factor (LPS) and a covariate factor (age) with a range of 0 to 36 (for instance, this
could be the mouse age in a mouse model).

13.3 Example 105

Figure 13.3: Preview of the Dataset Structure as Shown in the Inspector.

Column Groups and Usages

Define Usages:
ID
LPS
age

Define Groups:
sample-key used for << ... >>
ID used for ID ID ID
LPS=Yes used for LPS
LPS=No used for LPS
age used for age [read values from CovariateForSimulateDataset_TOBBQGPXLW use covariate age]
counts used for << ... >>

Figure 13.4: Column Group Annotations Created in the Model.

106 Simulating Datasets

Figure 13.5: Covariate Table Generated with Simulate Dataset.

Figure 13.6: Table Generated with Simulate Dataset. This is a partial view of the full
table.

Overview
Create a new Language
Create a new Language Concept
Define the Editor
Generate R Code
Using the New Language
Git Repository

14 — Extending MetaR

14.1 Overview

Because MetaR is developed in the MPS language workbench, you can use language
composition as a way to extend the MetaR language. In this Chapter, we provide a very
simple example to illustrate how to extend MetaR through language composition.

Let’s assume that you have just learned about the heatmap.2 function provided in
the gplots R package. You wish to use this function to create heatmaps with MetaR. To
achieve this, you would follow the following steps:

1. Create a new MPS Language.
2. Create a Heatmap.2 language concept in the Structure Aspect of the language

(see [campagne2014mps]).
3. Customize the Generator to transform instances of the Heatmap.2 into R code.

14.2 Create a new Language

Let’s create a new language. To do this, select the project and do right-click New
Language . Name the language something like your.domain.heatmap.When the lan-

guage has been created, select its name under the Project Tab and adjust Dependencies to
include org.campagnelab.metaR.tables. Set the Scope to Extends (this will allow statements
of this new language to extend concepts of org.campagnelab.metaR.tables).

14.3 Create a new Language Concept

Select the Structure Aspect of the your.domain.heatmap language and do right-click New
Concept .1 Name the concept Heatmap2. Define the extends clause to be Statement

(from language org.campagnelab.metar.tables). The resulting concept should appear as
shown in Figure 14.1.

1You can create a new language in an existing project, or use the New Project Dialog to create a Project
with type “Language”.

108 Extending MetaR

concept alias
Define the alias of the concept. Use heatmap2. An instance of the concept will be created
when you type this keyword in the editor.

reference to a table
To plot a heatmap, we will take data from a MetaR table. This can be achieved by adding a
TableRef child to the Heatmap2 concept. Set the cardinality to exactly one child ([1]).

heatmap produces a plot
The heatmap2 statement will produce a plot, so you need to add a child of type Plot. You
may call this child ‘plot’ for simplicity. Set the cardinality to exactly one child ([1]).

concept Heatmap2 extends Statement
implements <none>

 instance can be root: false
alias: heatmap2
short description: <no short description>

properties:
<< ... >>

children:
<< ... >>

references:
<< ... >>

Figure 14.1: Heatmap2 Concept. The Heatmap2 concept extends Statement. When the
language is composed with MetaR, Heatmap2 will become available for auto-completion
whenever a MetaR Statement can be used.

Figure 14.2 presents the completed concept after adding alias, table and plot.

14.4 Define the Editor

An MPS editor customizes how a node appears in the editor. Create an editor for Heatmap2
(see [campagne2014mps]) and define its content as shown in Figure 14.3.

14.5 Generate R Code

In order to generate the statement to R code, we will use the MPS Generator aspect.
In the first step, we create a reduction rule, see Figure 14.4 and [campagne2014mps]

(Generator Aspect chapter). The rule indicates that nodes of the Heatmap2 concept will
be transformed with the reduce_Heatmap2 template. The template was created using

14.5 Generate R Code 109

concept Heatmap2 extends Statement
implements <none>

 instance can be root: false
alias: heatmap2
short description: <no short description>

properties:
<< ... >>

children:
table : TableRef[1]
plot : Plot[1]

references:
<< ... >>

Figure 14.2: Complete Heatmap2 Concept. This figure shows the completed Heatmap2
concept with an alias and children for table and plot.

Figure 14.3: Editor of the
Heatmap2 Statement. No-
tice how the editor sim-
ply shows the name of the
statement, delegates to the
TableRef editor to render the
table reference, and delegates
to the Plot editor to show the
plot child.

<default> editor for concept Heatmap2
 node cell layout:

 [- heatmap2 % table % -> % plot % -]

inspected cell layout:
 <choose cell model>

110 Extending MetaR

the New Template intention found on the reduction rule node. See detailed instructions
in [campagne2014mps]. When configuring the type of the output node (under content
node:), use Lines, from the language org.campagnelab.textoutput to produce text with the
MPS Generator aspect.

R As an alternative, and since MetaR 1.5 supports a full R language implementation
in MPS, you could also use the concepts Expr or Exprlist from the language
org.campagnelab.R. Doing so would allow using the R language editor to define the
output of the reduction rule.

R MetaR 1.8 has introduced the language org.campagnelab.metar.R.inspect, which you
can use when writing generation rules with the org.campagnelab.R language. This
language facilitates generation for common operations in MetaR. See the sleuth, MA
Plot and UpSet statements for examples in the code base that take advantage of the
composable R language in the generator.

Figure 14.4: Generate R Code: Step 1. Start by adding a reduction rule.

The simplest template we can build for the Heatmap2 concept is shown on Figure 14.5.
Simply calling the heatmap.2 function is a good start, but trying to run this will fail because
the function is not part of a plain R distribution. The next section explains how to install the
gplot R package which provides the function and activate it.

14.5.1 Adding package and library support
MetaR makes it easy to install R packages as they are needed by an analysis. For this to
work, we need to declare that the Heatmap2 concept depends on the gplots R package. We
can do this by overriding the default Statement behavior method called dependencies().
This method is expected to return the list of package names that must be installed and loaded
before the statement can execute. To override the method, navigate to the Heatmap2 concept
in the editor, select the behavior tab, create the behavior and when the empty behavior is
shown, select Override Behavior Method (see Figure 14.6). Replace the body of the method
with

14.5 Generate R Code 111

Figure 14.5: Simplest template. The template simply converts any node of the Heatmap2
concept to a line of R code that calls the heatmap.2 function with the table as an argument.
Notice the use of a property macro to obtain the R name of the table variable from the node
table attribute. Open the to see what value the macro will take when a node is
generated to R code.

112 Extending MetaR

Figure 14.6: Override Be-
havior Methods. When
the override dialog appear,
choose dependencies() and
click OK.

Figure 14.7: Complete Dependencies Be-
havior Method.

return new singleton<string>("gplots");

Figure 14.7 shows the complete method. Rebuild the language, then the solution. When you
run the Analysis, you will see that the gplots package is being installed:

...
Loading required package: gplots
Installing package into ’/Users/fac2003/.metaRlibs’
(as ’lib’ is unspecified)
also installing the dependencies ’bitops’, ’gtools’, ’gdata’,

’caTools’

trying URL

14.5.2 Adjust Generator Priorities
Adjust the generator priorities as shown in Figure 14.8. To set priorities, you need to define
a Design dependency on org.campagnelab.metar.tables in the generator aspect Module
Properties dialog.

14.5.3 Redirecting the plot output
The next problem with the simple template is that it fails to write the image of the plot in
location where MetaR can find it. This is needed to display the plot preview, or to make it
possible to use plots with the multiplot statement. The strategy we use to handle both
cases is to wrap the actual plotting code inside a plot_xxx function. The function is named
with the id of the statement that generates the plot, so that we can easily refer to it in other
places where the plot should be reused. We start by defining this function:

plot_ $[id]=function(t){
heatmap.2(as.matrix(t))

14.5 Generate R Code 113

Figure 14.8: Adjust Generator Priorities. Generation of the Heatmap2 concept has to
happen in the same generation phase as the generation of the org.campagnelab.metar.tables
concepts. Failure to adjust priorities may result in table names not being correctly inserted
in the heatmap.2 function call.

}

The function accepts one argument: the name of the table to plot.

R The number of arguments is up to you, since you will generate both the function and
the function calls.

The next step is to add the R code for generating a PNG file with the plot to show a
preview in the inspector. To this end, we redirect the plot output with png(), call the plot
function, and close the graphics output (dev.off()):

png(file=" $[plot.png]", width= $[w], height= $[h])
plot_ $id($[table])
ignore <- dev.off()

Notice how the parameters of the png function are taken from the Plot node. For instance,
the $[plot.png] macro will expand to

new RPath(node.plot.getPath()).toString();

R If you use composable R to write the generator, you can reuse the DrawPlot ex-
pression provided by org.campagnelab.metar.R.inspect. This expression more conve-
niently generates to the png, plot and ignore expressions.

14.5.4 Handling errors
Accurate error reporting is important to the end-user. When things do not go well and
the R code fails, it is useful to know precisely which MetaR statement generated the
error. In MetaR, this is done by taking advantage of the tryCatch R functions (see
http://mazamascience.com/WorkingWithData/?p=912).

Because tryCatch is not particularly intuitive and is rather verbose, MetaR extends
the org.campagnelab.TextOutput language with the tryForNode statement (concept name:

http://mazamascience.com/WorkingWithData/?p=912

114 Extending MetaR

TryAndReport). The tryForNode statement attempts to execute some lines of R code,
and reports any errors that occur in these lines with a link to the statement that produced
the error or warning. The tryForNode statement is also responsible for showing the
STATEMENT_EXECUTED/8289224569309332962/ lines in the Run tool, which are hyper-
linked to statements in the editor.

The statement tryForNode takes an ID, which is the result of the id() method defined
for each MetaR statement. The value of the ID can be set as usual with a property macro
(its value should be node.id()). Figure 14.9 shows the completed template for Heatmap2.
While the statement only needs to call the heatmap.2 function, handling possible errors
and producing plots that can be reused to build multi-panel figures have added quite a few
lines to the output.

R MetaR 1.3.1.1 makes it easier to wrap TextOutput Lines into a tryForNode block.
Select a node of type Lines (highlighted in blue braces) and invoke the intention
Wrap Lines in a TryForNode Block. Note that this intention is not available
for lines already inside a tryForNode block.

R If you use composable R to write the generator of a statement, you can find the
equivalent of tryCatch and tryForNode in the org.campagnelab.metar.R.inspect
language.

Figure 14.9: Complete Generator for Heatmap2. This template wraps the heatmap.2
function call inside a plot function (needed when building figures with multiple panels) and
inside a tryForNode statement. The tryForNode statement generates to the tryCatch R
language construct and appropriately reports errors to the end-user.

14.6 Using the New Language 115

14.6 Using the New Language
Using the your.domain.heatmap2 language in MetaR analyses requires adding the language
under Used Languages, as shown here:

Once the language is added, you can create statements by typing the Heatmap2 concept
name. Figure 14.10 shows the result of using the new concept.

Figure 14.10: Heatmap2 Execution. This figure presents an Analysis using the new
Heatmap2 concept and shows the resulting plot preview in the inspector (bottom right).
Error handling and progress indicators can be seen on the bottom left.

14.7 Git Repository
This concludes this tutorial. You can find a project with the heatmap2 language extension
described in this Chapter at:

https://bitbucket.org/campagnelaboratory/
metar_extension_tutorial

Overview
RScript Root Node
installOrLoad statement
Package Stubs

15 — Composable R

15.1 Overview

MetaR release 1.5 was the first release to offer a composable R language for MPS (this
language is called org.campagnelab.metaR.R in MPS, but also simply referred to as “com-
posable R”, or compR). This Chapter explains how to take advantage of this language, what
the advantages of a composable R language are, but also describes the current limitations of
its implementation.

15.1.1 Advantages
Composable R supports the full R grammar
The composable R language implemented in MetaR 2.0+ supports the equivalent of the R
language grammar.

R We have developed composable R starting with the ANTRL4 R grammar obtained
from https://github.com/antlr/grammars-v4/tree/master/r. This gram-
mar was tweaked to improve priority rules of the parsing rules.

Because this language is composable, you can design micro-languages to compose with
R. An example of micro-language composition, to use the biomart statement described in
Chapter 10, is shown in Figure 15.1.

Fluent editing
Composable R supports Fluent Editing1. We have designed this technique to make it easier
to paste an R code fragment from text into an R script. The technique is also very useful
to enter complicated R expressions more quickly than possible with the MPS projectional
editor. Read on to learn how to use it.

Fluent editing can be used in any context where an expression or function parameter
declaration is expected into a composable R script. For instance, assume that you have
created a new R script. Place the cursor on a new line of this script, and paste:

1To learn how to implement this feature for your own languages, see [campagne2015mps]

https://github.com/antlr/grammars-v4/tree/master/r

118 Composable R

Figure 15.1: Example of Micro-Language Composition with Composable R. In this
example, we have composed the MetaR query biomart statement (see Chapter 10 with the R
language).

c(1,2,3,4,5)

Immediately after you pasted this expression, fluent editing will parse the expression and
translate it to composable R. Since c is an identifier that refers to a function, you will see
the color of the c letter change from blue (an identifier not linked to a declaration) to the
color green (used to indicate identifiers linked to a declaration). In this case, the function
identifiers becomes linked to the function declaration, in one of the package stubs shipped
with MetaR.

You can paste several lines of R code that will be parsed and inserted into the program in
a similar manner. Note that you do not need to paste any text and may just start typing into
any location that accepts an R expression (Expr concept in the org.campagnelab.metaR.R
language). Press return when you are satisfied the text you typed is parseable and the code
will be inserted into the script. Use the auto-completion menu to select Fluent code entry if
the text you type generates any ambiguity and press return to parse the text and insert the
parsed program into the script.

R Pasting expressions and parameter declarations should be sufficient to paste in most
contexts given the simple grammar of the R language. Let us know if you find that
pasting does not work in some context where you would expect it to. In such cases,
try pasting a larger piece of R code that contains the one you need to paste. Pasting
should work if this larger piece is an R expression.

15.2 RScript Root Node 119

15.1.2 Limitations
Composable R is not an R IDE
The goal of this language is not to replace an R integrated development environment (IDE)
(e.g., RStudio). A number of capable IDEs for the R language already exist, and it is not our
intention to develop another one. Composable R is developed as a research tool that helps us
explore the advantages and limitations of language composition for data analysis.

This being said, composable R provides some features commonly found in good IDEs,
including:

• auto-completion for function and identifier names.
• auto-completion for language keywords and constructs.
• navigation to function definition or previously defined identifier, within a script.
• ability to define intentions to automate modifications of R code and scripts.
• automatic refactorings (renaming an identifier automatically renames all references to

this identifier).
• You can run R scripts directly from within MPS. When you run, composable R scripts

are generated to pure R scripts and the scripts is executed either with a local installation
of R or with a Docker container.

However, the following features typically found in IDEs are not supported in MetaR:
• An interactive R console,
• An R debugger,
• A view of plots or tables created by a script.
For these reasons, we recommend using Composable R together with a good R IDE.

R We have started to address the third limitation in MetaR 2.0. For instance, we offer
the ability to preview plots directly inside an R script by using the MetaR multiplot
statement.

15.2 RScript Root Node
To create a composable R script in a model, make sure org.campagnelab.metaR.R is declared
in the list of Used Languages. Then select the model, right-click and do o.c.metaR.R.RScript .
This will create a root node, such as shown in Figure 15.2 where you can type expressions in
the R language.

<no name>.R
<< ... >>

Figure 15.2: New RScript Root Node. Press over the « ... » to enter new expressions
in the script. Enter at least a single new line before pasting code.

R Since version 2.0, you can compose MetaR statements into a composable R script.
To do this, import the language org.campagnelab.metar.R.metar and use the metar

120 Composable R

auto-completion. This will create a wrapper for a MetaR statement that lets you insert
any MetaR statement into the script.

15.2.1 Example

Figure 15.3 shows an example of an RScript written with MetaR. Note the Save Session
and installOrLoad statements at the top to support instant refresh. Similarly, the export
plot statement wraps the code that produces the plot into a named block of code and makes
it possible to refer to the plot in the multiplot statement (composed from MetaR)

UNHumanDevelopmentReport .R
installOrLoad ggplot2
installOrLoad scales
installOrLoad tidyr
installOrLoad ggrepel
installOrLoad grid

data.dir <- "${org.campagnelab.metaR.home}/data "
dat <- read.csv(file.path(data.dir, "IR-demo", "EconomistData.csv"))
pc1 <- ggplot(dat, aes(x = CPI, y = HDI, color = Region))
Save Session
pc2 <-

pc1 + geom_smooth(aes(group = 1), method = "lm", formula = y ~ log(x), se = FALSE, color = "red") + geom_point()
pc2 <- pc2 + geom_point(shape = 1, size = 4)
pc3 <- pc2 + geom_point(size = 4.5, shape = 1) + geom_point(size = 4, shape = 1) + geom_point(size = 3.5, shape = 1)
pointsToLabel <- c("Russia", "Venezuela", "Iraq", "Myanmar", "Sudan", "Afghanistan", "Congo", "Greece", "Argentina",

"Brazil", "India", "Italy", "China", "South Africa", "Spane", "Botswana", "Cape Verde", "Bhutan", "Rwanda",
"France", "United States", "Germany", "Britain", "Barbados", "Norway", "Japan", "New Zealand", "Singapore")

pc3 <- pc3 + geom_text_repel (aes(label = Country), color = "gray20", data = subset(dat,
Country %in% pointsToLabel), force = 10)

dat$ Region <- factor(
dat$ Region, levels = c("EU W. Europe", "Americas", "Asia Pacific", "East EU Cemt Asia ", "MENA",
"SSA"), labels = c("OECD", "Americas", "Asia &\nOceania ", "Central &\nEastern Europe ",
"Middle East &\nnorth Africa ", "Sub-Saharan\nAfrica "))

pc3$ data <- dat
Save Session
pc4 <-

pc3 + scale_x_continuous (name = "Corruption Perceptions Index, 2011 (10=least corrupt) ", limits = c(0.9,
10.5), breaks = 1 : 10) + scale_y_continuous (name = "Human Development Index, 2011 (1=Best) ", limits = c(0.2,
1.0), breaks = seq(0.2, 1.0, by = 0.1)) + scale_color_manual (name = "d", values = c("#24576D", "#099DD7",
"#28AADa", "#248E84", "#F2583F", "#96503F")) + ggtitle("Corruption and Human development ")

pc5 <-
pc4 + theme_minimal() + theme(text = element_text(color = "gray20"), legend.position = c(
"top"), legend.direction = "horizontal", legend.justification = 0.1, legend.text = element_text(
size = 11, color = "gray10"), axis.text = element_text(face = "italic"), axis.title.x = element_text(
vjust = - 1), axis.title.y = element_text(vjust = 2), axis.ticks.y = element_blank(), axis.line = element_line(
color = "gray40", size = 0.511111), axis.line.y = element_blank(), panel.grid.major = element_line(
color = "gray50", size = 0.5), panel.grid.major.x = element_blank())

mR2 <- summary(lm(HDI ~ log(CPI), data = dat))$ r.squared
export plot -> Output {

print(pc5)
grid.text(

"Sources: Transparency International; UN Human Development Report ", x = 0.02, y = 0.09, just = "left",
draw = TRUE)

grid.segments(x0 = 0.81, x1 = 0.825, y0 = 0.90, y1 = 0.90, gp = gpar(col = "red"), draw = TRUE)
grid.text(paste0("R² = ",

as.integer(mR2 * 100), "%"), x = 0.835, y = 0.90, gp = gpar(col = "gray20"), draw = TRUE, just = "left")
grid.text(paste0("Some Text"), x = "0.5", y = "0.8", gp = gpar(col = "black"), draw = "TRUE", just = "left")

}

multiplot -> Multiplot [1 cols x 1 rows] Preview

[Output]

Figure 15.3: United Nation Development Plot script with MetaR. This script was pasted
into MetaR from the code example available at http://tutorials.iq.harvard.edu/
R/Rgraphics/Rgraphics.html. Note the use of language composition that adds new
statements and associated semantic to regular R code.

http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html
http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html

15.3 installOrLoad statement 121

15.2.2 Execution
RScript root nodes can be executed directly from within MPS. Select an RScript, right-click
and do Run ’Script <name>’, where name is the name of the RScript you wish to execute.
Notice that you can provide program parameters in the Run Configuration dialog. Docker
execution (see Chapter 4 is also supported).

Since MetaR 2.0, composable R scripts support instant refresh. Changing the script will
trigger re-runs of the script in the background and will update plots and tables in real time.
See Chapter 6 for details.

15.3 installOrLoad statement
This statements conveniently loads a package, or installs and loads it if the package was
not present in the R distribution used to execute the script. This statement takes a single
argument: the name of the package/library to load. The inspector also offer the ability
to customize the CRAN repository/mirror used to download and install the package. The
following statement:

installOrLoad session
installOrLoad ggplot2

will generate the following R code:

installOrLoad<-function (lib,
repo="http://cran.us.r-project.org") {
if(!require(lib,character.only=TRUE)){

install.packages(lib,repos=repo)
library(lib,character.only=TRUE)

}
}

installOrLoad("session")
installOrLoad("ggplot2")

and result in installing and or loading the session and ggplot2 packages.

15.4 Package Stubs
The composable R language also defines the Stub root node, discussed in Section 11.5. Stubs
contain description of the functions and function paramters offered by R packages and can
be created automatically from the name of the package.

16 — MPS Key Map

Windows or Linux MacOS Action

+ 0-9 + 0-9 Open corresponding tool window
ctrl + S + S Save all
ctrl + + F11 N or A Toggle full screen mode
ctrl + + F12 N or A Toggle maximizing editor
ctrl + BackQuote ctrl + BackQuote Quick switch current scheme
ctrl + + S + Comma Open Settings dialog
ctrl + + C + + C Model Checker

Table 16.1: General

Windows or Linux MacOS Action

+ F7 + F7 Find usages
ctrl + + + F7 + + + F7 Highlight cell dependencies
ctrl + + F6 + + F6 Highlight instances
ctrl + + F7 + + F7 Highlight usages
ctrl + F + F Find text
F3 F3 Find next

+ F3 + F3 Find previous

Table 16.2: Usage and Text Search

124 MPS Key Map

Windows or Linux MacOS Action

ctrl + M + M Import model
ctrl + L + L Import language
ctrl + R + R Import model by root name

Table 16.3: Import

Windows or Linux MacOS Action

ctrl + ctrl + Code completion
ctrl + + click + + click Show descriptions of error

or warning at caret
+ + Show intention actions

ctrl + + T + + T Surround with...
ctrl + X or
ctrl + + + X Cut current line

or selected block to buffer
ctrl + C ctrl + Insert + C Copy current line

or selected block to buffer
ctrl + V + Insert + V Paste from buffer
ctrl + D + D Up current line or

selected block
+ F5 + F5 Clone root

ctrl + or + or Expand or Shrink block
selection region

ctrl + + or + + or Move statements Up or Down
+ Arrows + Arrows Extend the selected region

to siblings
ctrl + W + W Select successively increasing

code blocks
ctrl + + W + + W Decrease current selection

to previous state

Table 16.4: Editing (Part 1/2)

125

Windows or Linux MacOS Action

ctrl + Y + Y Delete line
ctrl + Z + Z Undo
ctrl + + Z + + Z Redo

+ F12 + F12 Show note in AST explorer
F5 F5 Refresh
ctrl + MINUS + MINUS Collapse
ctrl + + MINUS + + MINUS Collapse all
ctrl + PLUS + PLUS Expand
ctrl + + PLUS + + PLUS Expand all
ctrl + + 0-9 + + 0-9 Set bookmark
ctrl + 0-9 ctrl + 0-9 Go to bookmark
Tab Tab Move to the next cell

+ Tab + Tab Move to the previous cell
Insert ctrl + N Create Root Node

(in the Project View)

Table 16.5: Editing (Part 2/2)

126 MPS Key Map

Windows or Linux MacOS Action

ctrl + B or Go to root node
ctrl + click + B

or + click Go to declaration
ctrl + N + N

ctrl + + N + + N Go to file
ctrl + G + G Go to node by id
ctrl + + A + + A Go to action by name
ctrl + + + M + + + M Go to model
ctrl + + + S + + + S Go to solution
ctrl + + S + + S Go to concept

declaration
ctrl + + E + + E Go to concept

editor declaration
+ Left or Right ctrl + Left or Right Go to next

or previous editor tab
Esc Esc Go to editor (from

tool window)
+ Esc + Esc Hide active or

last active window
+ F12 + F12 Restore default

window layout
ctrl + + F12 + + F12 Hide all tool windows
F12 F12 Jump to the last

tool window

Table 16.6: Navigation (Part 1/2)

127

Windows or Linux MacOS Action

ctrl + E + E Recent nodes popup
ctrl + + Left + + Left

or Right or Right Navigate back or forward
+ F1 + F1 Select current

node in any view
ctrl + H + H Concept or Class hierarchy
F4 or F4 or Edit source or View source
ctrl + F4 + F4 Close active editor tab

+ 2 + 2 Go to inspector
ctrl + F10 + F10 Show structure
ctrl + +] + +] Go to next project window
ctrl + + [+ + [Go to previous project window
ctrl + + Right ctrl + + Right Go to next aspect tab
ctrl + + Left ctrl + + Left Go to previous aspect tab
ctrl + + + R + + + R Go to type-system rules
ctrl + + T + + T Show type
ctrl + H ctrl + H Show in hierarchy view
ctrl + I + I Inspect node

Table 16.7: Navigation (Part 2/2)

Windows or Linux MacOS Action

ctrl + F9 + F9 Generate current module
ctrl + + F9 + + F9 Generate current model

+ F10 + F10 Run
ctrl + + F10 + + F10 Run context configuration

+ + F10 + + F10 Select and run a configuration
ctrl + + F9 + + F9 Debug context configuration

+ + F9 + + F9 Select and debug
a configuration

ctrl + + + F9 + + + F9 Preview generated text
ctrl + + X + + X Show type-system trace

Table 16.8: Generation

128 MPS Key Map

Windows or Linux MacOS Action

ctrl + O + O Override methods
ctrl + I + I Implement methods
ctrl + / + / Comment or uncomment

with block comment
ctrl + F12 + F12 Show nodes
ctrl + P + P Show parameters
ctrl + Q ctrl + Q Show node information
ctrl + Insert ctrl + N Create new ...
ctrl + + B + + B Go to overriding methods

or Go to inherited classifiers
ctrl + U + U Go to overridden method

Table 16.9: BaseLanguage and Editing

Windows or Linux MacOS Action

ctrl + K + K Commit project to VCS
ctrl + T + T Update project from VCS
ctrl + V ctrl + V VCS operations popup
ctrl + + A + + A Add to VCS
ctrl + + E + + E Browse history
ctrl + D + D Show differences

Table 16.10: Version Control System and Local History

Windows or Linux MacOS Action

F6 F6 Move
+ F6 + F6 Rename
+ + Safe Delete

ctrl + + N + + N Inline
ctrl + + M + + M Extract Method
ctrl + + V + + V Introduce Variable
ctrl + + C + + C Introduce constant
ctrl + + F + + F Introduce field
ctrl + + P + + P Extract parameter
ctrl + + M + + M Extract method
ctrl + + N + + N Inline

Table 16.11: Refactoring

129

Windows or Linux MacOS Action

F8 F8 Step over
F7 F7 Step into

+ F8 + F8 Step out
F9 F9 Resume

+ F8 + F8 Evaluate expression
ctrl + F8 + F8 Toggle breakpoints
ctrl + + F8 + + F8 View breakpoints

Table 16.12: Debugger

List of Figures

1.1 The Quick Start menu. 15

1.2 The New Project Dialog. 16

2.1 New Table. 18

2.2 Example Table. 19

2.3 Empty Column Group Container. 19

2.4 New Group. 19

2.5 Example Group Container. 20

2.6 Content of a Sample Annotation Table 21

2.7 Table with Samples and Groups . 22

2.8 Intention to Annotate a Table using another Table 22

2.9 Covariate Table . 23

2.10 Intention to add a Covariate Table . 24

2.11 Column Group Annotation . 24

2.12 How to activate the Table Viewer Tool . 25

2.13 The Table Viewer Tool in the MPS UI . 26

2.14 Visualization Options for Table Viewer Tool 26

2.15 The Table Viewer Tool . 27

3.1 New MetaR Analysis Root Node. 29

3.2 Auto-completion Dialog for Statements. 30

132 LIST OF FIGURES

3.3 Typing Statement Aliases. 30

3.4 New Style. 31

3.5 Adding Style Items to a Style. 31

3.6 Create New Style on Statements. 32

3.7 Style with restricted Items. 32

3.8 Styles visible from a Statement. 32

3.9 New Write Statement . 33

3.10 New Sets of Ids. 34

3.11 Example of a user defined Sets of Ids. 34

3.12 New Subset Rows Statement. 34

3.13 Subset Rows Examples. 34

3.14 Subset Rows Examples. 35

3.15 New Join Statement. 36

3.16 Sample input tables for Join Statement. 37

3.17 Results Table for Join using by Column Strategy. 37

3.18 Results Table for Join using by Group Strategy. 38

3.19 Example of Join Statement. 38

3.20 Column Preview for Result Table. 39

3.21 New Transform Table Statement. 39

3.22 Example of Transform Table Statement. 40

3.23 New With Tables Statement. 41

3.24 Example of With Tables Statement. 41

3.25 New Boxplot Statement. 42

3.26 Color Palette Item. 42

3.27 Color Item. 43

3.28 New Scatterplot. 44

3.29 New Fit X by Y. 44

3.30 New Heatmap. 45

3.31 Example of Heatmap Plot. 46

3.32 Heatmap With Annotations. 46

3.33 New Venn Diagram. 47

LIST OF FIGURES 133

3.34 Sets type of venn diagram. 47

3.35 Example of Venn Diagram with Three Sets. 48

3.36 New Multiplot Statement. 49

3.37 Example of Multiplot. 49

3.38 New Render Statement. 50

3.39 UpSet Example Plot. 51

3.40 UpSet Plot Construction. 52

3.41 MA Plot Statement. 52

3.42 Example of MA Plot. 53

3.43 New t-SNE statement. 55

4.1 Docker Configuration Dialog. 58

4.2 Run With Docker. 59

5.1 New Check Count Depth Statement. 61

5.2 New SCnorm statement. 62

6.1 Visualize Changes . 64

6.2 Instant Refresh Settings . 65

6.3 Sessions Affect the List of Changed Nodes 66

7.1 Error When Typing the EdgeR Alias. 67

7.2 New EdgeR Statement. 67

7.3 EdgeR Example. 69

8.1 New Limma Voom Statement. 71

8.2 Limma Voom Example. 72

9.1 New Sleuth Statement. 73

9.2 Sleuth Statement Bound to a Table. 74

9.3 ColumnGroup and Table for Sleuth Tutorial 74

10.1 New Query Biomart Statement. 78

10.2 Select an attribute in a biomart dataset. 79

10.3 New Biomart Filter . 79

134 LIST OF FIGURES

10.4 Biomart Example 1 . 80

10.5 Biomart Example 2 . 80

11.1 New Import Package Statement. 82

11.2 New Import Bioconductor Package Statement. 83

11.3 Base Package Stubs Illustration. 83

11.4 Functions Example. 84

12.1 Context assistant at beginning of script. 85

12.2 Context assistant after loading one Seurat object. 86

12.3 Properties view of a newly created Seurat object. 86

12.4 New load 10X dataset statement. 87

12.5 Example of load 10X dataset statement. 88

12.6 Example of load data from table statement. 89

12.7 New cleanup seurat statement. 89

12.8 Example of cleanup seurat statement. 91

12.9 New normalize seurat statement. 91

12.10 New scale seurat statement. 92

12.11 New Diagnostic Plots statement. 92

12.12 New feature plot statement. 93

12.13 New feature plot and total statement. 94

12.14 Two features and their cumulated expression highlighted. . . . 94

12.15 New add principal components statement. 95

12.16 The standard deviations of principal components plot. 96

12.17 New add clusters statement. 96

12.18 New add markers statement. 97

12.19 New prealign statement. 98

12.20 Heatmaps showing the CC vectors and their scores per gene. 98

12.21 New align statement. 99

12.22 New pre limma statement. 100

12.23 New limma statement. 100

12.24 New merge seurat objects statement. 101

LIST OF FIGURES 135

12.25 New delete statement. 102

13.1 New Simulate Dataset Statement. 103

13.2 SimulateDataset Example. 104

13.3 Preview of the Dataset Structure as Shown in the Inspector. . 105

13.4 Column Group Annotations Created in the Model. 105

13.5 Covariate Table Generated with Simulate Dataset. 106

13.6 Table Generated with Simulate Dataset. 106

14.1 Heatmap2 Concept. 108

14.2 Complete Heatmap2 Concept. 109

14.3 Editor of the Heatmap2 Statement. 109

14.4 Generate R Code: Step 1. 110

14.5 Simplest template. 111

14.6 Override Behavior Methods. 112

14.7 Complete Dependencies Behavior Method. 112

14.8 Adjust Generator Priorities. 113

14.9 Complete Generator for Heatmap2. 114

14.10 Heatmap2 Execution. 115

15.1 Example of Micro-Language Composition with Composable R. 118

15.2 New RScript Root Node . 119

15.3 United Nation Development Plot script with MetaR. 120

Index

Accessing MetaR columns within R expres-
sions, 84

add column, 40

Bioconductor, 82
Biomart, 77
Block with Tables, 40
BoxPlot, 42

Column Group Annotations, 23
Column Groups, 18
Column Groups Container, 18
Column Groups Table, 21
Composable R, 117
Composable R Language, 14
Create a Table, 17

define a set, 34
Docker, 57
drop column, 39
drop columns which have group, 40
drop columns which match, 40

Example, 18, 21, 38, 47
Example, Venn diagram, 48

Filter rows, 34
Fluent editing, 117
Function stubs, 81
Functions, 81

Git, 115

Heatmap, 45
Histogram, 43
How Join Works, 37

Import bioconductor package, 82
Import function stubs, 82
Import package, 82
installOrLoad, 121

Join, 37, 38
Join Tables, 36

Kallisto, 73

Likelihood Ratio Test, 75
LRT, 75

MA Plot, 50, 110
Multiplot, 48

New in MetaR 1.3, 23, 47
New in MetaR 1.8, 50, 72, 110, 113
New in MetaR 2.0, 63, 121

org.campagnelab.metar.R.inspect, 110

Plotting data, 41

query biomart statement, 77

R Functions, 81
R Language, 14, 117

138 INDEX

rename column, 40
Render, 50

Sets of Ids, 34
Sleuth, 73, 110
Stubs, 83
Styles, 30
Subset rows, 34

Table Viewer Tool, 23
Transform Table, 39

UpSet, 110
UpSet plot, 50

Venn diagram, 47

Wald Test, 75

	Introduction
	Background
	Intended audience
	Key Concepts
	Solutions and Models

	Tables
	Overview
	Create a Table
	Column Groups Container
	Column Groups
	Column Group Usage
	Example Column Group Container
	Column Groups from a Table
	Column Group Annotations
	Table Viewer Tool

	Analyses
	The MetaR Analysis Root Node
	Styles
	Working with Tables
	Define Sets of Ids
	Subset Rows
	Join Tables
	Transform Table
	Block with Selected Tables
	Plotting Data

	Docker Integration
	Pre-requisites
	Configuring Docker
	Running with Docker

	SCnorm
	Single Cell Normalization

	Instant refresh
	Usage
	IR Preferences
	Tool
	pause instant refresh
	Sessions

	EdgeR
	Understanding Language Composition
	The edgeR Statement
	Example

	Limma Voom
	Overview
	The Limma Voom Statement
	Example

	Sleuth
	Overview
	Sleuth statement
	Statistical Test

	Biomart
	Overview
	The Biomart Statement
	Examples

	R Functions
	Overview
	Import Stubs Statement
	Import Package Statement
	Import Bioconductor Package Statement
	Stubs
	Eval Statement
	Eval Expression
	Accessing MetaR Columns within R Expressions
	Example

	Seurat
	The Seurat language
	The Seurat object
	Loading Seurat objects
	QC and Clean Up
	Adjusting Seurat objects
	Plotting Seurat objects
	Adding information to Seurat objects
	Aligning Seurat objects
	Limma for Seurat objects
	Other Seurat statements

	Simulating Datasets
	Why simulating datasets
	The Simulate Dataset Statement
	Example

	Extending MetaR
	Overview
	Create a new Language
	Create a new Language Concept
	Define the Editor
	Generate R Code
	Using the New Language
	Git Repository

	Composable R
	Overview
	RScript Root Node
	installOrLoad statement
	Package Stubs

	MPS Key Map
	List of Figures
	Bibliography
	Index

